Giải tích Ví dụ

Solve the Differential Equation x(yd)x-(x^2+y^2)dy=0
Bước 1
Tìm trong đó .
Nhấp để xem thêm các bước...
Bước 1.1
Tính đạo hàm đối với .
Bước 1.2
không đổi đối với , nên đạo hàm của đối với .
Bước 1.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.4
Nhân với .
Bước 2
Tìm trong đó .
Nhấp để xem thêm các bước...
Bước 2.1
Tính đạo hàm đối với .
Bước 2.2
không đổi đối với , nên đạo hàm của đối với .
Bước 2.3
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.5
là hằng số đối với , đạo hàm của đối với .
Bước 2.6
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 2.6.1
Cộng .
Bước 2.6.2
Nhân với .
Bước 3
Kiểm tra để đảm bảo .
Nhấp để xem thêm các bước...
Bước 3.1
Thế vào vào .
Bước 3.2
Vì vế trái không bằng vế phải, nên phương trình không phải là một đẳng thức.
không phải là một đẳng thức.
không phải là một đẳng thức.
Bước 4
Tìm thừa số tích phân .
Nhấp để xem thêm các bước...
Bước 4.1
Thay bằng .
Bước 4.2
Thay bằng .
Bước 4.3
Thay bằng .
Nhấp để xem thêm các bước...
Bước 4.3.1
Thay bằng .
Bước 4.3.2
Trừ khỏi .
Bước 4.3.3
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 4.3.3.1
Triệt tiêu thừa số chung.
Bước 4.3.3.2
Viết lại biểu thức.
Bước 4.3.4
Thay bằng .
Bước 4.4
Tìm thừa số tích phân .
Bước 5
Tính ở dạng tích phân.
Nhấp để xem thêm các bước...
Bước 5.1
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 5.2
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 5.3
Nhân với .
Bước 5.4
Tích phân của đối với .
Bước 5.5
Rút gọn.
Bước 5.6
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 5.6.1
Rút gọn bằng cách di chuyển trong logarit.
Bước 5.6.2
Lũy thừa và logarit là các hàm nghịch đảo.
Bước 5.6.3
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 6
Nhân cả hai vế của với hệ số tích phân .
Nhấp để xem thêm các bước...
Bước 6.1
Nhân với .
Bước 6.2
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 6.2.1
Đưa ra ngoài .
Bước 6.2.2
Đưa ra ngoài .
Bước 6.2.3
Triệt tiêu thừa số chung.
Bước 6.2.4
Viết lại biểu thức.
Bước 6.3
Kết hợp .
Bước 6.4
Nhân với .
Bước 6.5
Áp dụng thuộc tính phân phối.
Bước 6.6
Nhân với .
Bước 6.7
Đưa ra ngoài .
Bước 6.8
Đưa ra ngoài .
Bước 6.9
Đưa ra ngoài .
Bước 6.10
Viết lại ở dạng .
Bước 6.11
Di chuyển dấu trừ ra phía trước của phân số.
Bước 7
Đặt bằng tích phân của .
Bước 8
Lấy tích phân để tìm .
Nhấp để xem thêm các bước...
Bước 8.1
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 8.2
Theo Quy tắc lũy thừa, tích phân của đối với .
Bước 8.3
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 8.3.1
Viết lại ở dạng .
Bước 8.3.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 8.3.2.1
Nhân với .
Bước 8.3.2.2
Di chuyển sang phía bên trái của .
Bước 8.3.2.3
Nhân với .
Bước 8.3.2.4
Kết hợp .
Bước 9
Vì tích phân của sẽ chứa hằng số tích phân nên ta có thể thay thế bằng .
Bước 10
Đặt .
Bước 11
Tìm .
Nhấp để xem thêm các bước...
Bước 11.1
Tính đạo hàm đối với .
Bước 11.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 11.3
Tính .
Nhấp để xem thêm các bước...
Bước 11.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 11.3.2
Viết lại ở dạng .
Bước 11.3.3
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 11.3.3.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 11.3.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 11.3.3.3
Thay thế tất cả các lần xuất hiện của với .
Bước 11.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 11.3.5
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 11.3.5.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 11.3.5.2
Nhân với .
Bước 11.3.6
Nhân với .
Bước 11.3.7
Nâng lên lũy thừa .
Bước 11.3.8
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 11.3.9
Trừ khỏi .
Bước 11.3.10
Kết hợp .
Bước 11.3.11
Kết hợp .
Bước 11.3.12
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 11.3.13
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 11.3.13.1
Đưa ra ngoài .
Bước 11.3.13.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 11.3.13.2.1
Đưa ra ngoài .
Bước 11.3.13.2.2
Triệt tiêu thừa số chung.
Bước 11.3.13.2.3
Viết lại biểu thức.
Bước 11.3.14
Di chuyển dấu trừ ra phía trước của phân số.
Bước 11.4
Tính đạo hàm bằng quy tắc hàm cho biết đạo hàm của .
Bước 11.5
Sắp xếp lại các số hạng.
Bước 12
Giải tìm .
Nhấp để xem thêm các bước...
Bước 12.1
Giải tìm .
Nhấp để xem thêm các bước...
Bước 12.1.1
Di chuyển tất cả các số hạng chứa biến sang vế trái của phương trình.
Nhấp để xem thêm các bước...
Bước 12.1.1.1
Cộng cho cả hai vế của phương trình.
Bước 12.1.1.2
Kết hợp các tử số trên mẫu số chung.
Bước 12.1.1.3
Cộng .
Bước 12.1.1.4
Cộng .
Bước 12.1.1.5
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 12.1.1.5.1
Nhân với .
Bước 12.1.1.5.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 12.1.1.5.2.1
Đưa ra ngoài .
Bước 12.1.1.5.2.2
Triệt tiêu thừa số chung.
Bước 12.1.1.5.2.3
Viết lại biểu thức.
Bước 12.1.2
Trừ khỏi cả hai vế của phương trình.
Bước 13
Tìm nguyên hàm của để tìm .
Nhấp để xem thêm các bước...
Bước 13.1
Lấy tích phân cả hai vế của .
Bước 13.2
Tính .
Bước 13.3
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 13.4
Tích phân của đối với .
Bước 13.5
Rút gọn.
Bước 14
Thay cho trong .