Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tính đạo hàm đối với .
Bước 1.2
Tìm đạo hàm.
Bước 1.2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3
Tính .
Bước 1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.3
Nhân với .
Bước 1.4
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.5
Rút gọn.
Bước 1.5.1
Cộng và .
Bước 1.5.2
Sắp xếp lại các số hạng.
Bước 2
Bước 2.1
Tính đạo hàm đối với .
Bước 2.2
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.3
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.5
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.6
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.7
Nhân với .
Bước 2.8
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 2.9
Cộng và .
Bước 2.10
Rút gọn.
Bước 2.10.1
Áp dụng thuộc tính phân phối.
Bước 2.10.2
Kết hợp các số hạng.
Bước 2.10.2.1
Nhân với .
Bước 2.10.2.2
Nhân với .
Bước 3
Bước 3.1
Thế vào và vào .
Bước 3.2
Vì hai vế đã được chứng minh là tương đương, nên phương trình là một đẳng thức.
là một đẳng thức.
là một đẳng thức.
Bước 4
Đặt bằng tích phân của .
Bước 5
Bước 5.1
Vì không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 5.2
Chia tích phân đơn thành nhiều tích phân.
Bước 5.3
Áp dụng quy tắc hằng số.
Bước 5.4
Vì không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 5.5
Theo Quy tắc lũy thừa, tích phân của đối với là .
Bước 5.6
Áp dụng quy tắc hằng số.
Bước 5.7
Kết hợp và .
Bước 5.8
Rút gọn.
Bước 6
Vì tích phân của sẽ chứa hằng số tích phân nên ta có thể thay thế bằng .
Bước 7
Đặt .
Bước 8
Bước 8.1
Tính đạo hàm đối với .
Bước 8.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 8.3
Tính .
Bước 8.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 8.3.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 8.3.3
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 8.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 8.3.5
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 8.3.6
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 8.3.7
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 8.3.8
Di chuyển sang phía bên trái của .
Bước 8.3.9
Nhân với .
Bước 8.3.10
Cộng và .
Bước 8.4
Tính đạo hàm bằng quy tắc hàm cho biết đạo hàm của là .
Bước 8.5
Rút gọn.
Bước 8.5.1
Áp dụng thuộc tính phân phối.
Bước 8.5.2
Kết hợp các số hạng.
Bước 8.5.2.1
Nhân với .
Bước 8.5.2.2
Nhân với .
Bước 8.5.2.3
Nhân với .
Bước 8.5.3
Sắp xếp lại các số hạng.
Bước 9
Bước 9.1
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Bước 9.1.1
Trừ khỏi cả hai vế của phương trình.
Bước 9.1.2
Cộng cho cả hai vế của phương trình.
Bước 9.1.3
Kết hợp các số hạng đối nhau trong .
Bước 9.1.3.1
Trừ khỏi .
Bước 9.1.3.2
Cộng và .
Bước 9.1.3.3
Cộng và .
Bước 9.1.3.4
Cộng và .
Bước 10
Bước 10.1
Lấy tích phân cả hai vế của .
Bước 10.2
Tính .
Bước 10.3
Áp dụng quy tắc hằng số.
Bước 11
Thay cho trong .
Bước 12
Bước 12.1
Áp dụng thuộc tính phân phối.
Bước 12.2
Rút gọn.
Bước 12.2.1
Nhân .
Bước 12.2.1.1
Nhân với .
Bước 12.2.1.2
Nhân với .
Bước 12.2.2
Nhân với .