Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tính đạo hàm đối với .
Bước 1.2
Tìm đạo hàm.
Bước 1.2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.2.2
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.3
Tính .
Bước 1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.3.2
Đạo hàm của đối với là .
Bước 1.4
Rút gọn.
Bước 1.4.1
Trừ khỏi .
Bước 1.4.2
Sắp xếp lại các thừa số của .
Bước 2
Bước 2.1
Tính đạo hàm đối với .
Bước 2.2
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.3
Đạo hàm của đối với là .
Bước 2.4
Sắp xếp lại các thừa số của .
Bước 3
Bước 3.1
Thế vào và vào .
Bước 3.2
Vì hai vế đã được chứng minh là tương đương, nên phương trình là một đẳng thức.
là một đẳng thức.
là một đẳng thức.
Bước 4
Đặt bằng tích phân của .
Bước 5
Bước 5.1
Vì không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 5.2
Tích phân của đối với là .
Bước 5.3
Rút gọn.
Bước 6
Vì tích phân của sẽ chứa hằng số tích phân nên ta có thể thay thế bằng .
Bước 7
Đặt .
Bước 8
Bước 8.1
Tính đạo hàm đối với .
Bước 8.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 8.3
Tính .
Bước 8.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 8.3.2
Đạo hàm của đối với là .
Bước 8.4
Tính đạo hàm bằng quy tắc hàm cho biết đạo hàm của là .
Bước 8.5
Sắp xếp lại các số hạng.
Bước 9
Bước 9.1
Giải tìm .
Bước 9.1.1
Rút gọn vế phải.
Bước 9.1.1.1
Rút gọn .
Bước 9.1.1.1.1
Viết lại theo sin và cosin.
Bước 9.1.1.1.2
Quy đổi từ sang .
Bước 9.1.2
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Bước 9.1.2.1
Cộng cho cả hai vế của phương trình.
Bước 9.1.2.2
Kết hợp các số hạng đối nhau trong .
Bước 9.1.2.2.1
Cộng và .
Bước 9.1.2.2.2
Cộng và .
Bước 9.1.2.3
Viết lại theo sin và cosin.
Bước 9.1.2.4
Quy đổi từ sang .
Bước 10
Bước 10.1
Lấy tích phân cả hai vế của .
Bước 10.2
Tính .
Bước 10.3
Tích phân của đối với là .
Bước 11
Thay cho trong .