Giải tích Ví dụ

Solve the Differential Equation (x^2dy)/(dx)+xy=1
Bước 1
Viết lại phương trình vi phân ở dạng .
Nhấp để xem thêm các bước...
Bước 1.1
Đưa ra ngoài.
Bước 1.2
Chia mỗi số hạng trong cho .
Bước 1.3
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 1.3.1
Triệt tiêu thừa số chung.
Bước 1.3.2
Chia cho .
Bước 1.4
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 1.4.1
Đưa ra ngoài .
Bước 1.4.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 1.4.2.1
Đưa ra ngoài .
Bước 1.4.2.2
Triệt tiêu thừa số chung.
Bước 1.4.2.3
Viết lại biểu thức.
Bước 1.5
Đưa ra ngoài .
Bước 1.6
Sắp xếp lại .
Bước 2
Thừa số tích phân được xác định bằng công thức , trong đó .
Nhấp để xem thêm các bước...
Bước 2.1
Lập tích phân.
Bước 2.2
Tích phân của đối với .
Bước 2.3
Loại trừ hằng số tích phân.
Bước 2.4
Lũy thừa và logarit là các hàm nghịch đảo.
Bước 3
Nhân mỗi số hạng với thừa số tích phân .
Nhấp để xem thêm các bước...
Bước 3.1
Nhân từng số hạng với .
Bước 3.2
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 3.2.1
Kết hợp .
Bước 3.2.2
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 3.2.2.1
Triệt tiêu thừa số chung.
Bước 3.2.2.2
Viết lại biểu thức.
Bước 3.3
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 3.3.1
Đưa ra ngoài .
Bước 3.3.2
Triệt tiêu thừa số chung.
Bước 3.3.3
Viết lại biểu thức.
Bước 4
Viết lại vế trái ở dạng kết quả của phép tính đạo hàm một tích.
Bước 5
Lập tích phân ở mỗi vế.
Bước 6
Lấy tích phân vế trái.
Bước 7
Tích phân của đối với .
Bước 8
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 8.1
Chia mỗi số hạng trong cho .
Bước 8.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 8.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 8.2.1.1
Triệt tiêu thừa số chung.
Bước 8.2.1.2
Chia cho .