Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tính đạo hàm đối với .
Bước 1.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.3
Tính .
Bước 1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.3
Nhân với .
Bước 1.4
Tính .
Bước 1.4.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.4.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.4.3
Nhân với .
Bước 1.5
Tìm đạo hàm bằng quy tắc hằng số.
Bước 1.5.1
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.5.2
Cộng và .
Bước 2
Bước 2.1
Tính đạo hàm đối với .
Bước 2.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.3
Tính .
Bước 2.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.3.3
Nhân với .
Bước 2.4
Tính .
Bước 2.4.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.4.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.4.3
Nhân với .
Bước 3
Bước 3.1
Thế vào và vào .
Bước 3.2
Vì vế trái không bằng vế phải, nên phương trình không phải là một đẳng thức.
không phải là một đẳng thức.
không phải là một đẳng thức.
Bước 4
Bước 4.1
Thay bằng .
Bước 4.2
Thay bằng .
Bước 4.3
Thay bằng .
Bước 4.3.1
Thay bằng .
Bước 4.3.2
Rút gọn tử số.
Bước 4.3.2.1
Áp dụng thuộc tính phân phối.
Bước 4.3.2.2
Nhân với .
Bước 4.3.2.3
Nhân với .
Bước 4.3.2.4
Trừ khỏi .
Bước 4.3.2.5
Trừ khỏi .
Bước 4.3.2.6
Cộng và .
Bước 4.3.3
Đưa ra ngoài .
Bước 4.3.3.1
Đưa ra ngoài .
Bước 4.3.3.2
Đưa ra ngoài .
Bước 4.3.3.3
Đưa ra ngoài .
Bước 4.3.4
Triệt tiêu thừa số chung của và .
Bước 4.3.4.1
Đưa ra ngoài .
Bước 4.3.4.2
Triệt tiêu các thừa số chung.
Bước 4.3.4.2.1
Đưa ra ngoài .
Bước 4.3.4.2.2
Triệt tiêu thừa số chung.
Bước 4.3.4.2.3
Viết lại biểu thức.
Bước 4.3.5
Triệt tiêu thừa số chung của và .
Bước 4.3.5.1
Đưa ra ngoài .
Bước 4.3.5.2
Triệt tiêu các thừa số chung.
Bước 4.3.5.2.1
Triệt tiêu thừa số chung.
Bước 4.3.5.2.2
Viết lại biểu thức.
Bước 4.3.6
Di chuyển dấu trừ ra phía trước của phân số.
Bước 4.4
Tìm thừa số tích phân .
Bước 5
Bước 5.1
Vì không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 5.2
Vì không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 5.3
Nhân với .
Bước 5.4
Giả sử . Sau đó , nên . Viết lại bằng và .
Bước 5.4.1
Hãy đặt . Tìm .
Bước 5.4.1.1
Tính đạo hàm .
Bước 5.4.1.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 5.4.1.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 5.4.1.4
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 5.4.1.5
Cộng và .
Bước 5.4.2
Viết lại bài tập bằng cách dùng và .
Bước 5.5
Rút gọn.
Bước 5.5.1
Nhân với .
Bước 5.5.2
Di chuyển sang phía bên trái của .
Bước 5.6
Vì không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 5.7
Rút gọn.
Bước 5.7.1
Kết hợp và .
Bước 5.7.2
Triệt tiêu thừa số chung của và .
Bước 5.7.2.1
Đưa ra ngoài .
Bước 5.7.2.2
Triệt tiêu các thừa số chung.
Bước 5.7.2.2.1
Đưa ra ngoài .
Bước 5.7.2.2.2
Triệt tiêu thừa số chung.
Bước 5.7.2.2.3
Viết lại biểu thức.
Bước 5.7.2.2.4
Chia cho .
Bước 5.8
Tích phân của đối với là .
Bước 5.9
Rút gọn.
Bước 5.10
Thay thế tất cả các lần xuất hiện của với .
Bước 5.11
Rút gọn mỗi số hạng.
Bước 5.11.1
Rút gọn bằng cách di chuyển trong logarit.
Bước 5.11.2
Lũy thừa và logarit là các hàm nghịch đảo.
Bước 5.11.3
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 6
Bước 6.1
Nhân với .
Bước 6.2
Nhân với .
Bước 6.3
Nhân với .
Bước 6.4
Nhân với .
Bước 6.5
Đưa ra ngoài .
Bước 6.5.1
Đưa ra ngoài .
Bước 6.5.2
Đưa ra ngoài .
Bước 6.5.3
Đưa ra ngoài .
Bước 6.6
Triệt tiêu thừa số chung .
Bước 6.6.1
Triệt tiêu thừa số chung.
Bước 6.6.2
Chia cho .
Bước 7
Đặt bằng tích phân của .
Bước 8
Bước 8.1
Áp dụng quy tắc hằng số.
Bước 9
Vì tích phân của sẽ chứa hằng số tích phân nên ta có thể thay thế bằng .
Bước 10
Đặt .
Bước 11
Bước 11.1
Tính đạo hàm đối với .
Bước 11.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 11.3
Tính .
Bước 11.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 11.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 11.3.3
Nhân với .
Bước 11.4
Tính đạo hàm bằng quy tắc hàm cho biết đạo hàm của là .
Bước 11.5
Sắp xếp lại các số hạng.
Bước 12
Bước 12.1
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Bước 12.1.1
Trừ khỏi cả hai vế của phương trình.
Bước 12.1.2
Rút gọn mỗi số hạng.
Bước 12.1.2.1
Tách phân số thành hai phân số.
Bước 12.1.2.2
Rút gọn mỗi số hạng.
Bước 12.1.2.2.1
Đưa ra ngoài .
Bước 12.1.2.2.1.1
Đưa ra ngoài .
Bước 12.1.2.2.1.2
Đưa ra ngoài .
Bước 12.1.2.2.1.3
Đưa ra ngoài .
Bước 12.1.2.2.2
Triệt tiêu thừa số chung .
Bước 12.1.2.2.2.1
Triệt tiêu thừa số chung.
Bước 12.1.2.2.2.2
Chia cho .
Bước 12.1.3
Kết hợp các số hạng đối nhau trong .
Bước 12.1.3.1
Trừ khỏi .
Bước 12.1.3.2
Cộng và .
Bước 13
Bước 13.1
Lấy tích phân cả hai vế của .
Bước 13.2
Tính .
Bước 13.3
Vì không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 13.4
Sắp xếp lại và .
Bước 13.5
Viết lại ở dạng .
Bước 13.6
Tích phân của đối với là .
Bước 13.7
Rút gọn.
Bước 14
Thay cho trong .