Giải tích Ví dụ

Solve the Differential Equation cos(x)^2(dy)/(dx)=y+3
Bước 1
Tách các biến.
Nhấp để xem thêm các bước...
Bước 1.1
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 1.1.1
Chia mỗi số hạng trong cho .
Bước 1.1.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 1.1.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 1.1.2.1.1
Triệt tiêu thừa số chung.
Bước 1.1.2.1.2
Chia cho .
Bước 1.1.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 1.1.3.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.1.3.1.1
Nhân với .
Bước 1.1.3.1.2
Tách các phân số.
Bước 1.1.3.1.3
Quy đổi từ sang .
Bước 1.1.3.1.4
Chia cho .
Bước 1.1.3.1.5
Nhân với .
Bước 1.1.3.1.6
Tách các phân số.
Bước 1.1.3.1.7
Quy đổi từ sang .
Bước 1.1.3.1.8
Chia cho .
Bước 1.2
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 1.2.1
Đưa ra ngoài .
Bước 1.2.2
Đưa ra ngoài .
Bước 1.2.3
Đưa ra ngoài .
Bước 1.3
Nhân cả hai vế với .
Bước 1.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 1.4.1
Đưa ra ngoài .
Bước 1.4.2
Triệt tiêu thừa số chung.
Bước 1.4.3
Viết lại biểu thức.
Bước 1.5
Viết lại phương trình.
Bước 2
Lấy tích phân cả hai vế.
Nhấp để xem thêm các bước...
Bước 2.1
Lập tích phân ở mỗi vế.
Bước 2.2
Lấy tích phân vế trái.
Nhấp để xem thêm các bước...
Bước 2.2.1
Giả sử . Sau đó . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 2.2.1.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 2.2.1.1.1
Tính đạo hàm .
Bước 2.2.1.1.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.2.1.1.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.1.1.4
là hằng số đối với , đạo hàm của đối với .
Bước 2.2.1.1.5
Cộng .
Bước 2.2.1.2
Viết lại bài tập bằng cách dùng .
Bước 2.2.2
Tích phân của đối với .
Bước 2.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.3
Vì đạo hàm của , tích phân của .
Bước 2.4
Nhóm hằng số tích phân ở vế phải thành .
Bước 3
Giải tìm .
Nhấp để xem thêm các bước...
Bước 3.1
Để giải tìm , hãy viết lại phương trình bằng các tính chất của logarit.
Bước 3.2
Viết lại dưới dạng mũ bằng cách dùng định nghĩa của logarit. Nếu là các số thực dương và , thì sẽ tương đương với .
Bước 3.3
Giải tìm .
Nhấp để xem thêm các bước...
Bước 3.3.1
Viết lại phương trình ở dạng .
Bước 3.3.2
Loại bỏ số hạng chứa giá trị tuyệt đối. Điều này tạo ra một ở vế phải của phương trình vì .
Bước 3.3.3
Trừ khỏi cả hai vế của phương trình.
Bước 4
Nhóm các số hạng hằng số với nhau.
Nhấp để xem thêm các bước...
Bước 4.1
Viết lại ở dạng .
Bước 4.2
Sắp xếp lại .
Bước 4.3
Kết hợp các hằng số với dấu cộng hoặc trừ.