Giải tích Ví dụ

Solve the Differential Equation x^2dy+(xy+x^2)dx=0
Bước 1
Viết lại phương trình vi phân cho phù hợp với kỹ thuật Phương trình vi phân chính xác.
Nhấp để xem thêm các bước...
Bước 1.1
Viết lại.
Bước 2
Tìm trong đó .
Nhấp để xem thêm các bước...
Bước 2.1
Tính đạo hàm đối với .
Bước 2.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.3
Tính .
Nhấp để xem thêm các bước...
Bước 2.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.3.3
Nhân với .
Bước 2.4
Tìm đạo hàm bằng quy tắc hằng số.
Nhấp để xem thêm các bước...
Bước 2.4.1
là hằng số đối với , đạo hàm của đối với .
Bước 2.4.2
Cộng .
Bước 3
Tìm trong đó .
Nhấp để xem thêm các bước...
Bước 3.1
Tính đạo hàm đối với .
Bước 3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4
Kiểm tra để đảm bảo .
Nhấp để xem thêm các bước...
Bước 4.1
Thế vào vào .
Bước 4.2
Vì vế trái không bằng vế phải, nên phương trình không phải là một đẳng thức.
không phải là một đẳng thức.
không phải là một đẳng thức.
Bước 5
Tìm thừa số tích phân .
Nhấp để xem thêm các bước...
Bước 5.1
Thay bằng .
Bước 5.2
Thay bằng .
Bước 5.3
Thay bằng .
Nhấp để xem thêm các bước...
Bước 5.3.1
Thay bằng .
Bước 5.3.2
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 5.3.2.1
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 5.3.2.1.1
Nâng lên lũy thừa .
Bước 5.3.2.1.2
Đưa ra ngoài .
Bước 5.3.2.1.3
Đưa ra ngoài .
Bước 5.3.2.1.4
Đưa ra ngoài .
Bước 5.3.2.2
Nhân với .
Bước 5.3.2.3
Trừ khỏi .
Bước 5.3.3
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 5.3.3.1
Đưa ra ngoài .
Bước 5.3.3.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 5.3.3.2.1
Đưa ra ngoài .
Bước 5.3.3.2.2
Triệt tiêu thừa số chung.
Bước 5.3.3.2.3
Viết lại biểu thức.
Bước 5.3.4
Di chuyển dấu trừ ra phía trước của phân số.
Bước 5.4
Tìm thừa số tích phân .
Bước 6
Tính ở dạng tích phân.
Nhấp để xem thêm các bước...
Bước 6.1
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 6.2
Tích phân của đối với .
Bước 6.3
Rút gọn.
Bước 6.4
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 6.4.1
Rút gọn bằng cách di chuyển trong logarit.
Bước 6.4.2
Lũy thừa và logarit là các hàm nghịch đảo.
Bước 6.4.3
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 7
Nhân cả hai vế của với hệ số tích phân .
Nhấp để xem thêm các bước...
Bước 7.1
Nhân với .
Bước 7.2
Nhân với .
Bước 7.3
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 7.3.1
Đưa ra ngoài .
Bước 7.3.2
Đưa ra ngoài .
Bước 7.3.3
Đưa ra ngoài .
Bước 7.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 7.4.1
Triệt tiêu thừa số chung.
Bước 7.4.2
Chia cho .
Bước 7.5
Nhân với .
Bước 7.6
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 7.6.1
Đưa ra ngoài .
Bước 7.6.2
Triệt tiêu thừa số chung.
Bước 7.6.3
Viết lại biểu thức.
Bước 8
Đặt bằng tích phân của .
Bước 9
Lấy tích phân để tìm .
Nhấp để xem thêm các bước...
Bước 9.1
Áp dụng quy tắc hằng số.
Bước 10
Vì tích phân của sẽ chứa hằng số tích phân nên ta có thể thay thế bằng .
Bước 11
Đặt .
Bước 12
Tìm .
Nhấp để xem thêm các bước...
Bước 12.1
Tính đạo hàm đối với .
Bước 12.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 12.3
Tính .
Nhấp để xem thêm các bước...
Bước 12.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 12.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 12.3.3
Nhân với .
Bước 12.4
Tính đạo hàm bằng quy tắc hàm cho biết đạo hàm của .
Bước 12.5
Sắp xếp lại các số hạng.
Bước 13
Giải tìm .
Nhấp để xem thêm các bước...
Bước 13.1
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Nhấp để xem thêm các bước...
Bước 13.1.1
Trừ khỏi cả hai vế của phương trình.
Bước 13.1.2
Kết hợp các số hạng đối nhau trong .
Nhấp để xem thêm các bước...
Bước 13.1.2.1
Trừ khỏi .
Bước 13.1.2.2
Cộng .
Bước 14
Tìm nguyên hàm của để tìm .
Nhấp để xem thêm các bước...
Bước 14.1
Lấy tích phân cả hai vế của .
Bước 14.2
Tính .
Bước 14.3
Theo Quy tắc lũy thừa, tích phân của đối với .
Bước 15
Thay cho trong .
Bước 16
Kết hợp .