Giải tích Ví dụ

Solve the Differential Equation x(dy)/(dx)=y+xy
Bước 1
Tách các biến.
Nhấp để xem thêm các bước...
Bước 1.1
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 1.1.1
Chia mỗi số hạng trong cho .
Bước 1.1.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 1.1.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 1.1.2.1.1
Triệt tiêu thừa số chung.
Bước 1.1.2.1.2
Chia cho .
Bước 1.1.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 1.1.3.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 1.1.3.1.1
Triệt tiêu thừa số chung.
Bước 1.1.3.1.2
Chia cho .
Bước 1.2
Phân tích thành thừa số.
Nhấp để xem thêm các bước...
Bước 1.2.1
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 1.2.1.1
Đưa ra ngoài .
Bước 1.2.1.2
Nâng lên lũy thừa .
Bước 1.2.1.3
Đưa ra ngoài .
Bước 1.2.1.4
Đưa ra ngoài .
Bước 1.2.2
Viết ở dạng một phân số với một mẫu số chung.
Bước 1.2.3
Kết hợp các tử số trên mẫu số chung.
Bước 1.3
Nhân cả hai vế với .
Bước 1.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 1.4.1
Triệt tiêu thừa số chung.
Bước 1.4.2
Viết lại biểu thức.
Bước 1.5
Viết lại phương trình.
Bước 2
Lấy tích phân cả hai vế.
Nhấp để xem thêm các bước...
Bước 2.1
Lập tích phân ở mỗi vế.
Bước 2.2
Tích phân của đối với .
Bước 2.3
Lấy tích phân vế phải.
Nhấp để xem thêm các bước...
Bước 2.3.1
Chia phân số thành nhiều phân số.
Bước 2.3.2
Chia tích phân đơn thành nhiều tích phân.
Bước 2.3.3
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 2.3.3.1
Triệt tiêu thừa số chung.
Bước 2.3.3.2
Viết lại biểu thức.
Bước 2.3.4
Tích phân của đối với .
Bước 2.3.5
Áp dụng quy tắc hằng số.
Bước 2.3.6
Rút gọn.
Bước 2.3.7
Sắp xếp lại các số hạng.
Bước 2.4
Nhóm hằng số tích phân ở vế phải thành .
Bước 3
Giải tìm .
Nhấp để xem thêm các bước...
Bước 3.1
Chuyển tất cả các số hạng có chứa logarit sang vế trái của phương trình.
Bước 3.2
Sử dụng tính chất thương của logarit, .
Bước 3.3
Để giải tìm , hãy viết lại phương trình bằng các tính chất của logarit.
Bước 3.4
Viết lại dưới dạng mũ bằng cách dùng định nghĩa của logarit. Nếu là các số thực dương và , thì sẽ tương đương với .
Bước 3.5
Giải tìm .
Nhấp để xem thêm các bước...
Bước 3.5.1
Viết lại phương trình ở dạng .
Bước 3.5.2
Nhân cả hai vế với .
Bước 3.5.3
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 3.5.3.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 3.5.3.1.1
Triệt tiêu thừa số chung.
Bước 3.5.3.1.2
Viết lại biểu thức.
Bước 3.5.4
Giải tìm .
Nhấp để xem thêm các bước...
Bước 3.5.4.1
Sắp xếp lại các thừa số trong .
Bước 3.5.4.2
Loại bỏ số hạng chứa giá trị tuyệt đối. Điều này tạo ra một ở vế phải của phương trình vì .
Bước 4
Nhóm các số hạng hằng số với nhau.
Nhấp để xem thêm các bước...
Bước 4.1
Viết lại ở dạng .
Bước 4.2
Sắp xếp lại .
Bước 4.3
Kết hợp các hằng số với dấu cộng hoặc trừ.