Nhập bài toán...
Toán cơ bản Ví dụ
Bước 1
Bước 1.1
Xét dạng . Tìm một cặp số nguyên mà tích số của chúng là và tổng của chúng là . Trong trường hợp này, tích số của chúng là và tổng của chúng là .
Bước 1.2
Viết dạng đã được phân tích thành thừa số bằng các số nguyên này.
Bước 2
Bước 2.1
Tìm MCNN của các giá trị cũng giống như tìm BCNN của các mẫu số của các giá trị đó.
Bước 2.2
BCNN là số dương nhỏ nhất mà tất cả các số chia đều cho nó.
1. Liệt kê các thừa số nguyên tố của từng số.
2. Nhân mỗi thừa số với số lần xuất hiện nhiều nhất của nó ở một trong các số.
Bước 2.3
Số không phải là một số nguyên tố vì nó chỉ có một thừa số dương, cũng là chính nó.
Không phải là số nguyên tố
Bước 2.4
BCNN của là kết quả của việc nhân tất cả các thừa số nguyên tố với số lần lớn nhất chúng xảy ra trong cả hai số.
Bước 2.5
Thừa số cho là chính nó .
xảy ra lần.
Bước 2.6
Thừa số cho là chính nó .
xảy ra lần.
Bước 2.7
BCNN của là kết quả của việc nhân tất cả các thừa số với số lần lớn nhất chúng xảy ra trong cả hai số hạng.
Bước 3
Bước 3.1
Nhân mỗi số hạng trong với .
Bước 3.2
Rút gọn vế trái.
Bước 3.2.1
Triệt tiêu thừa số chung .
Bước 3.2.1.1
Triệt tiêu thừa số chung.
Bước 3.2.1.2
Viết lại biểu thức.
Bước 3.2.2
Áp dụng thuộc tính phân phối.
Bước 3.2.3
Nhân với .
Bước 3.3
Rút gọn vế phải.
Bước 3.3.1
Rút gọn mỗi số hạng.
Bước 3.3.1.1
Triệt tiêu thừa số chung .
Bước 3.3.1.1.1
Triệt tiêu thừa số chung.
Bước 3.3.1.1.2
Viết lại biểu thức.
Bước 3.3.1.2
Triệt tiêu thừa số chung .
Bước 3.3.1.2.1
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 3.3.1.2.2
Đưa ra ngoài .
Bước 3.3.1.2.3
Triệt tiêu thừa số chung.
Bước 3.3.1.2.4
Viết lại biểu thức.
Bước 3.3.1.3
Áp dụng thuộc tính phân phối.
Bước 3.3.1.4
Nhân với .
Bước 3.3.2
Trừ khỏi .
Bước 4
Bước 4.1
Di chuyển tất cả các số hạng chứa sang vế trái của phương trình.
Bước 4.1.1
Trừ khỏi cả hai vế của phương trình.
Bước 4.1.2
Trừ khỏi .
Bước 4.2
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Bước 4.2.1
Trừ khỏi cả hai vế của phương trình.
Bước 4.2.2
Trừ khỏi .
Bước 5
Loại bỏ đáp án không làm cho đúng.