Nhập bài toán...
Đại số Ví dụ
Bước 1
Bước 1.1
Di chuyển tất cả các số hạng chứa biến sang vế trái của phương trình.
Bước 1.1.1
Trừ khỏi cả hai vế của phương trình.
Bước 1.1.2
Rút gọn mỗi số hạng.
Bước 1.1.2.1
Nhân với bằng cách cộng các số mũ.
Bước 1.1.2.1.1
Di chuyển .
Bước 1.1.2.1.2
Nhân với .
Bước 1.1.2.2
Nhân với bằng cách cộng các số mũ.
Bước 1.1.2.2.1
Di chuyển .
Bước 1.1.2.2.2
Nhân với .
Bước 1.1.2.3
Nhân .
Bước 1.1.2.3.1
Nâng lên lũy thừa .
Bước 1.1.2.3.2
Nâng lên lũy thừa .
Bước 1.1.2.3.3
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 1.1.2.3.4
Cộng và .
Bước 1.1.3
Di chuyển .
Bước 1.1.4
Di chuyển .
Bước 1.1.5
Di chuyển .
Bước 1.1.6
Sắp xếp lại và .
Bước 1.2
Chia mỗi số hạng cho để làm cho vế phải bằng một.
Bước 1.3
Rút gọn từng số hạng trong phương trình để đặt vế phải bằng . Dạng chính tắc của hình elip hoặc hyperbol yêu cầu phía vế phải của phương trình bằng .
Bước 2
Đây là dạng của một hyperbol. Sử dụng dạng này để xác định các giá trị được sử dụng để tìm các đỉnh và các tiệm cận của hyperbol.
Bước 3
Tương ứng các giá trị trong hyperbol này với dạng chính tắc. Biến là khoảng cách theo trục x tính từ gốc tọa độ, là khoảng cách theo trục y tính từ gốc tọa độ, .
Bước 4
Tâm của một hyperbol có dạng . Thay vào các giá trị của và .
Bước 5
Bước 5.1
Tìm khoảng cách từ tâm đến tiêu điểm của đường hyperbol bằng công thức sau.
Bước 5.2
Thay các giá trị của và vào công thức.
Bước 5.3
Rút gọn.
Bước 5.3.1
Một mũ bất kỳ số nào là một.
Bước 5.3.2
Một mũ bất kỳ số nào là một.
Bước 5.3.3
Cộng và .
Bước 6
Bước 6.1
Có thể tìm đỉnh đầu tiên của một hyperbol bằng cách cộng vào .
Bước 6.2
Thay các giá trị đã biết của , , và vào công thức và rút gọn.
Bước 6.3
Có thể tìm đỉnh thứ hai của một hyperbol bằng cách trừ từ .
Bước 6.4
Thay các giá trị đã biết của , , và vào công thức và rút gọn.
Bước 6.5
Các đỉnh của một hyperbol có dạng . Hyperbol có hai đỉnh.
Bước 7
Bước 7.1
Có thể tìm tiêu điểm đầu tiên của một hyperbol bằng cách cộng vào .
Bước 7.2
Thay các giá trị đã biết của , , và vào công thức và rút gọn.
Bước 7.3
Có thể tìm tiêu điểm thứ hai của một hyperbol bằng cách trừ từ .
Bước 7.4
Thay các giá trị đã biết của , , và vào công thức và rút gọn.
Bước 7.5
Tiêu điểm của một hyperbol có dạng . Hyperbol có hai tiêu điểm.
Bước 8
Bước 8.1
Tìm tâm sai bằng công thức sau.
Bước 8.2
Thay giá trị của và vào công thức.
Bước 8.3
Rút gọn.
Bước 8.3.1
Chia cho .
Bước 8.3.2
Một mũ bất kỳ số nào là một.
Bước 8.3.3
Một mũ bất kỳ số nào là một.
Bước 8.3.4
Cộng và .
Bước 9
Bước 9.1
Tìm giá trị của thông số tiêu cự hyperbol bằng cách sử dụng công thức sau.
Bước 9.2
Thay các giá trị của và vào công thức.
Bước 9.3
Rút gọn.
Bước 9.3.1
Một mũ bất kỳ số nào là một.
Bước 9.3.2
Nhân với .
Bước 9.3.3
Kết hợp và rút gọn mẫu số.
Bước 9.3.3.1
Nhân với .
Bước 9.3.3.2
Nâng lên lũy thừa .
Bước 9.3.3.3
Nâng lên lũy thừa .
Bước 9.3.3.4
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 9.3.3.5
Cộng và .
Bước 9.3.3.6
Viết lại ở dạng .
Bước 9.3.3.6.1
Sử dụng để viết lại ở dạng .
Bước 9.3.3.6.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 9.3.3.6.3
Kết hợp và .
Bước 9.3.3.6.4
Triệt tiêu thừa số chung .
Bước 9.3.3.6.4.1
Triệt tiêu thừa số chung.
Bước 9.3.3.6.4.2
Viết lại biểu thức.
Bước 9.3.3.6.5
Tính số mũ.
Bước 10
Các tiệm cận có dạng vì hyperbol này quay mặt lõm sang trái và sang phải.
Bước 11
Bước 11.1
Cộng và .
Bước 11.2
Nhân với .
Bước 12
Bước 12.1
Cộng và .
Bước 12.2
Viết lại ở dạng .
Bước 13
Hyperbol này có hai tiệm cận.
Bước 14
Những giá trị này đại diện cho các giá trị quan trọng cho việc vẽ đồ thị và phân tích một hyperbol.
Tâm:
Các đỉnh:
Tiêu điểm:
Tâm sai:
Tham số tiêu:
Các đường tiệm cận: ,
Bước 15