Nhập bài toán...
Đại số Ví dụ
Bước 1
Bước 1.1
Đối với bất kỳ, các tiệm cận đứng xảy ra tại , trong đó là một số nguyên. Sử dụng chu kỳ cơ bản cho , , để tìm các tiệm cận đứng cho . Đặt phần bên trong hàm cotangent, , cho bằng để tìm nơi tiệm cận đứng xảy ra cho .
Bước 1.2
Giải tìm .
Bước 1.2.1
Cộng cho cả hai vế của phương trình.
Bước 1.2.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 1.2.2.1
Chia mỗi số hạng trong cho .
Bước 1.2.2.2
Rút gọn vế trái.
Bước 1.2.2.2.1
Triệt tiêu thừa số chung .
Bước 1.2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 1.2.2.2.1.2
Chia cho .
Bước 1.3
Đặt phần bên trong hàm cotang bằng .
Bước 1.4
Giải tìm .
Bước 1.4.1
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Bước 1.4.1.1
Cộng cho cả hai vế của phương trình.
Bước 1.4.1.2
Cộng và .
Bước 1.4.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 1.4.2.1
Chia mỗi số hạng trong cho .
Bước 1.4.2.2
Rút gọn vế trái.
Bước 1.4.2.2.1
Triệt tiêu thừa số chung .
Bước 1.4.2.2.1.1
Triệt tiêu thừa số chung.
Bước 1.4.2.2.1.2
Chia cho .
Bước 1.4.2.3
Rút gọn vế phải.
Bước 1.4.2.3.1
Triệt tiêu thừa số chung .
Bước 1.4.2.3.1.1
Triệt tiêu thừa số chung.
Bước 1.4.2.3.1.2
Chia cho .
Bước 1.5
Chu kỳ cơ bản cho sẽ xảy ra tại , nơi và là các tiệm cận đứng.
Bước 1.6
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 1.7
Các tiệm cận đứng cho xảy ra tại , và mỗi , trong đó là một số nguyên.
Bước 1.8
Cotang chỉ có các đường tiệm cận đứng.
Không có các tiệm cận ngang
Không có các tiệm cận xiên
Các tiệm cận đứng: nơi là một số nguyên
Không có các tiệm cận ngang
Không có các tiệm cận xiên
Các tiệm cận đứng: nơi là một số nguyên
Bước 2
Sử dụng dạng để tìm các biến được sử dụng để tìm biên độ, chu kỳ, độ lệch pha, và sự dịch chuyển dọc.
Bước 3
Vì đồ thị của hàm không có giá trị cực đại hoặc cực tiểu, nên không có giá trị nào cho biên độ.
Biên độ: Không có
Bước 4
Bước 4.1
Tìm chu kỳ của .
Bước 4.1.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 4.1.2
Thay thế với trong công thức cho chu kỳ.
Bước 4.1.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 4.2
Tìm chu kỳ của .
Bước 4.2.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 4.2.2
Thay thế với trong công thức cho chu kỳ.
Bước 4.2.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 4.3
Chu kỳ của phép cộng/phép trừ của các hàm lượng giác là giá trị cực đại của các chu kỳ riêng lẻ.
Bước 5
Bước 5.1
Độ lệch pha của hàm số có thể được tính từ .
Độ lệch pha:
Bước 5.2
Thay thế các giá trị của và vào phương trình cho độ lệch pha.
Độ lệch pha:
Độ lệch pha:
Bước 6
Liệt kê các tính chất của hàm lượng giác.
Biên độ: Không có
Chu kỳ:
Độ lệch pha: ( sang bên phải)
Dịch chuyển dọc:
Bước 7
Hàm lượng giác có thể được vẽ đồ thị bằng biên độ, chu kỳ, độ lệch pha, sự dịch chuyển dọc và các điểm.
Các tiệm cận đứng: nơi là một số nguyên
Biên độ: Không có
Chu kỳ:
Độ lệch pha: ( sang bên phải)
Dịch chuyển dọc:
Bước 8