Nhập bài toán...
Đại số Ví dụ
Bước 1
Bước 1.1
Viết lại ở dạng .
Bước 1.2
Vì cả hai số hạng đều là số chính phương, nên ta phân tích thành thừa số bằng công thức hiệu của hai bình phương, trong đó và .
Bước 2
Bước 2.1
Tìm MCNN của các giá trị cũng giống như tìm BCNN của các mẫu số của các giá trị đó.
Bước 2.2
BCNN là số dương nhỏ nhất mà tất cả các số chia đều cho nó.
1. Liệt kê các thừa số nguyên tố của từng số.
2. Nhân mỗi thừa số với số lần xuất hiện nhiều nhất của nó ở một trong các số.
Bước 2.3
Số không phải là một số nguyên tố vì nó chỉ có một thừa số dương, cũng là chính nó.
Không phải là số nguyên tố
Bước 2.4
BCNN của là kết quả của việc nhân tất cả các thừa số nguyên tố với số lần lớn nhất chúng xảy ra trong cả hai số.
Bước 2.5
Thừa số cho là chính nó .
xảy ra lần.
Bước 2.6
Thừa số cho là chính nó .
xảy ra lần.
Bước 2.7
Thừa số cho là chính nó .
xảy ra lần.
Bước 2.8
Thừa số cho là chính nó .
xảy ra lần.
Bước 2.9
BCNN của là kết quả của việc nhân tất cả các thừa số với số lần lớn nhất chúng xảy ra trong cả hai số hạng.
Bước 3
Bước 3.1
Nhân mỗi số hạng trong với .
Bước 3.2
Rút gọn vế trái.
Bước 3.2.1
Rút gọn mỗi số hạng.
Bước 3.2.1.1
Triệt tiêu thừa số chung .
Bước 3.2.1.1.1
Triệt tiêu thừa số chung.
Bước 3.2.1.1.2
Viết lại biểu thức.
Bước 3.2.1.2
Triệt tiêu thừa số chung .
Bước 3.2.1.2.1
Đưa ra ngoài .
Bước 3.2.1.2.2
Triệt tiêu thừa số chung.
Bước 3.2.1.2.3
Viết lại biểu thức.
Bước 3.2.2
Rút gọn bằng cách cộng các số hạng.
Bước 3.2.2.1
Kết hợp các số hạng đối nhau trong .
Bước 3.2.2.1.1
Cộng và .
Bước 3.2.2.1.2
Cộng và .
Bước 3.2.2.2
Cộng và .
Bước 3.3
Rút gọn vế phải.
Bước 3.3.1
Triệt tiêu thừa số chung .
Bước 3.3.1.1
Triệt tiêu thừa số chung.
Bước 3.3.1.2
Viết lại biểu thức.
Bước 4
Bước 4.1
Chia mỗi số hạng trong cho .
Bước 4.2
Rút gọn vế trái.
Bước 4.2.1
Triệt tiêu thừa số chung .
Bước 4.2.1.1
Triệt tiêu thừa số chung.
Bước 4.2.1.2
Chia cho .
Bước 4.3
Rút gọn vế phải.
Bước 4.3.1
Chia cho .
Bước 5
Loại bỏ đáp án không làm cho đúng.