Nhập bài toán...
Đại số Ví dụ
Bước 1
Thay thế bằng dựa trên đẳng thức .
Bước 2
Bước 2.1
Áp dụng thuộc tính phân phối.
Bước 2.2
Nhân với .
Bước 2.3
Nhân với .
Bước 3
Cộng và .
Bước 4
Thay bằng .
Bước 5
Bước 5.1
Đối với đa thức có dạng , hãy viết lại số hạng ở giữa là tổng của hai số hạng có tích là và có tổng là .
Bước 5.1.1
Nhân với .
Bước 5.1.2
Viết lại ở dạng cộng
Bước 5.1.3
Áp dụng thuộc tính phân phối.
Bước 5.2
Đưa ước số chung lớn nhất từ từng nhóm ra ngoài.
Bước 5.2.1
Nhóm hai số hạng đầu tiên và hai số hạng cuối.
Bước 5.2.2
Đưa ước số chung lớn nhất (ƯCLN) từ từng nhóm ra ngoài.
Bước 5.3
Phân tích đa thức thành thừa số bằng cách đưa ước số chung lớn nhất ra ngoài, .
Bước 6
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 7
Bước 7.1
Đặt bằng với .
Bước 7.2
Giải để tìm .
Bước 7.2.1
Cộng cho cả hai vế của phương trình.
Bước 7.2.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 7.2.2.1
Chia mỗi số hạng trong cho .
Bước 7.2.2.2
Rút gọn vế trái.
Bước 7.2.2.2.1
Triệt tiêu thừa số chung .
Bước 7.2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 7.2.2.2.1.2
Chia cho .
Bước 8
Bước 8.1
Đặt bằng với .
Bước 8.2
Trừ khỏi cả hai vế của phương trình.
Bước 9
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 10
Thay bằng .
Bước 11
Lập từng đáp án để giải tìm .
Bước 12
Bước 12.1
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 12.2
Rút gọn vế phải.
Bước 12.2.1
Giá trị chính xác của là .
Bước 12.3
Hàm sin dương trong góc phần tư thứ nhất và thứ hai. Để tìm đáp án thứ hai, trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ hai.
Bước 12.4
Rút gọn .
Bước 12.4.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 12.4.2
Kết hợp các phân số.
Bước 12.4.2.1
Kết hợp và .
Bước 12.4.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 12.4.3
Rút gọn tử số.
Bước 12.4.3.1
Di chuyển sang phía bên trái của .
Bước 12.4.3.2
Trừ khỏi .
Bước 12.5
Tìm chu kỳ của .
Bước 12.5.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 12.5.2
Thay thế với trong công thức cho chu kỳ.
Bước 12.5.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 12.5.4
Chia cho .
Bước 12.6
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 13
Bước 13.1
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 13.2
Rút gọn vế phải.
Bước 13.2.1
Giá trị chính xác của là .
Bước 13.3
Hàm sin âm trong góc phần tư thứ ba và thứ tư. Để tìm đáp án thứ hai, hãy trừ đáp án khỏi , để tìm góc tham chiếu. Tiếp theo, cộng góc tham chiếu này vào để tìm đáp án trong góc phần tư thứ ba.
Bước 13.4
Rút gọn biểu thức để tìm đáp án thứ hai.
Bước 13.4.1
Trừ khỏi .
Bước 13.4.2
Góc tìm được dương, nhỏ hơn , và có chung cạnh cuối với .
Bước 13.5
Tìm chu kỳ của .
Bước 13.5.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 13.5.2
Thay thế với trong công thức cho chu kỳ.
Bước 13.5.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 13.5.4
Chia cho .
Bước 13.6
Cộng vào mọi góc âm để có được các góc dương.
Bước 13.6.1
Cộng vào để tìm góc dương.
Bước 13.6.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 13.6.3
Kết hợp các phân số.
Bước 13.6.3.1
Kết hợp và .
Bước 13.6.3.2
Kết hợp các tử số trên mẫu số chung.
Bước 13.6.4
Rút gọn tử số.
Bước 13.6.4.1
Nhân với .
Bước 13.6.4.2
Trừ khỏi .
Bước 13.6.5
Liệt kê các góc mới.
Bước 13.7
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 14
Liệt kê tất cả các đáp án.
, cho mọi số nguyên
Bước 15
Hợp nhất các câu trả lời.
, cho mọi số nguyên