Lượng giác Ví dụ

sin(7x)sin(7x)
Bước 1
Một phương pháp tốt để khai triển sin(7x)sin(7x) là sử dụng định lý De Moivre (r(cos(x)+isin(x))n=rn(cos(nx)+isin(nx)))(r(cos(x)+isin(x))n=rn(cos(nx)+isin(nx))). Khi r=1r=1, thì cos(nx)+isin(nx)=(cos(x)+isin(x))ncos(nx)+isin(nx)=(cos(x)+isin(x))n.
cos(nx)+isin(nx)=(cos(x)+isin(x))ncos(nx)+isin(nx)=(cos(x)+isin(x))n
Bước 2
Khai triển vế phải của cos(nx)+isin(nx)=(cos(x)+isin(x))ncos(nx)+isin(nx)=(cos(x)+isin(x))n bằng cách sử dụng định lý nhị thức.
Khai triển: (cos(x)+isin(x))7(cos(x)+isin(x))7
Bước 3
Sử dụng định lý nhị thức.
cos7(x)+7cos6(x)(isin(x))+21cos5(x)(isin(x))2+35cos4(x)(isin(x))3+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7cos7(x)+7cos6(x)(isin(x))+21cos5(x)(isin(x))2+35cos4(x)(isin(x))3+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4
Rút gọn các số hạng.
Nhấp để xem thêm các bước...
Bước 4.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 4.1.1
Áp dụng quy tắc tích số cho isin(x)isin(x).
cos7(x)+7cos6(x)isin(x)+21cos5(x)(i2sin2(x))+35cos4(x)(isin(x))3+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7cos7(x)+7cos6(x)isin(x)+21cos5(x)(i2sin2(x))+35cos4(x)(isin(x))3+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.2
Viết lại bằng tính chất giao hoán của phép nhân.
cos7(x)+7cos6(x)isin(x)+21i2cos5(x)sin2(x)+35cos4(x)(isin(x))3+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7cos7(x)+7cos6(x)isin(x)+21i2cos5(x)sin2(x)+35cos4(x)(isin(x))3+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.3
Viết lại i2 ở dạng -1.
cos7(x)+7cos6(x)isin(x)+21-1cos5(x)sin2(x)+35cos4(x)(isin(x))3+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.4
Nhân 21 với -1.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)+35cos4(x)(isin(x))3+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.5
Áp dụng quy tắc tích số cho isin(x).
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)+35cos4(x)(i3sin3(x))+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.6
Viết lại bằng tính chất giao hoán của phép nhân.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)+35i3cos4(x)sin3(x)+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.7
Đưa i2 ra ngoài.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)+35(i2i)cos4(x)sin3(x)+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.8
Viết lại i2 ở dạng -1.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)+35(-1i)cos4(x)sin3(x)+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.9
Viết lại -1i ở dạng -i.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)+35(-i)cos4(x)sin3(x)+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.10
Nhân -1 với 35.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)(isin(x))4+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.11
Áp dụng quy tắc tích số cho isin(x).
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)(i4sin4(x))+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.12
Viết lại bằng tính chất giao hoán của phép nhân.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35i4cos3(x)sin4(x)+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.13
Viết lại i4 ở dạng 1.
Nhấp để xem thêm các bước...
Bước 4.1.13.1
Viết lại i4 ở dạng (i2)2.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35(i2)2cos3(x)sin4(x)+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.13.2
Viết lại i2 ở dạng -1.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35(-1)2cos3(x)sin4(x)+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.13.3
Nâng -1 lên lũy thừa 2.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+351cos3(x)sin4(x)+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+351cos3(x)sin4(x)+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.14
Nhân 35 với 1.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21cos2(x)(isin(x))5+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.15
Áp dụng quy tắc tích số cho isin(x).
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21cos2(x)(i5sin5(x))+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.16
Viết lại bằng tính chất giao hoán của phép nhân.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21i5cos2(x)sin5(x)+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.17
Đưa i4 ra ngoài.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21(i4i)cos2(x)sin5(x)+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.18
Viết lại i4 ở dạng 1.
Nhấp để xem thêm các bước...
Bước 4.1.18.1
Viết lại i4 ở dạng (i2)2.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21((i2)2i)cos2(x)sin5(x)+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.18.2
Viết lại i2 ở dạng -1.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21((-1)2i)cos2(x)sin5(x)+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.18.3
Nâng -1 lên lũy thừa 2.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21(1i)cos2(x)sin5(x)+7cos(x)(isin(x))6+(isin(x))7
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21(1i)cos2(x)sin5(x)+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.19
Nhân i với 1.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)+7cos(x)(isin(x))6+(isin(x))7
Bước 4.1.20
Áp dụng quy tắc tích số cho isin(x).
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)+7cos(x)(i6sin6(x))+(isin(x))7
Bước 4.1.21
Đưa i4 ra ngoài.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)+7cos(x)(i4i2sin6(x))+(isin(x))7
Bước 4.1.22
Viết lại i4 ở dạng 1.
Nhấp để xem thêm các bước...
Bước 4.1.22.1
Viết lại i4 ở dạng (i2)2.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)+7cos(x)((i2)2i2sin6(x))+(isin(x))7
Bước 4.1.22.2
Viết lại i2 ở dạng -1.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)+7cos(x)((-1)2i2sin6(x))+(isin(x))7
Bước 4.1.22.3
Nâng -1 lên lũy thừa 2.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)+7cos(x)(1i2sin6(x))+(isin(x))7
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)+7cos(x)(1i2sin6(x))+(isin(x))7
Bước 4.1.23
Nhân i2 với 1.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)+7cos(x)(i2sin6(x))+(isin(x))7
Bước 4.1.24
Viết lại i2 ở dạng -1.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)+7cos(x)(-1sin6(x))+(isin(x))7
Bước 4.1.25
Viết lại -1sin6(x) ở dạng -sin6(x).
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)+7cos(x)(-sin6(x))+(isin(x))7
Bước 4.1.26
Nhân -1 với 7.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)+(isin(x))7
Bước 4.1.27
Áp dụng quy tắc tích số cho isin(x).
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)+i7sin7(x)
Bước 4.1.28
Viết lại i7 ở dạng i4(i2i).
Nhấp để xem thêm các bước...
Bước 4.1.28.1
Đưa i4 ra ngoài.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)+i4i3sin7(x)
Bước 4.1.28.2
Đưa i2 ra ngoài.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)+i4(i2i)sin7(x)
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)+i4(i2i)sin7(x)
Bước 4.1.29
Viết lại i4 ở dạng 1.
Nhấp để xem thêm các bước...
Bước 4.1.29.1
Viết lại i4 ở dạng (i2)2.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)+(i2)2(i2i)sin7(x)
Bước 4.1.29.2
Viết lại i2 ở dạng -1.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)+(-1)2(i2i)sin7(x)
Bước 4.1.29.3
Nâng -1 lên lũy thừa 2.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)+1(i2i)sin7(x)
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)+1(i2i)sin7(x)
Bước 4.1.30
Nhân i2i với 1.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)+i2isin7(x)
Bước 4.1.31
Viết lại i2 ở dạng -1.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)-1isin7(x)
Bước 4.1.32
Viết lại -1i ở dạng -i.
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)-isin7(x)
cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)-isin7(x)
Bước 4.2
Sắp xếp lại các thừa số trong cos7(x)+7cos6(x)isin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)-isin7(x).
cos7(x)+7icos6(x)sin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)-isin7(x)
cos7(x)+7icos6(x)sin(x)-21cos5(x)sin2(x)-35icos4(x)sin3(x)+35cos3(x)sin4(x)+21icos2(x)sin5(x)-7cos(x)sin6(x)-isin7(x)
Bước 5
Di chuyển các biểu thức có phần ảo bằng sin(7x) ra ngoài. Loại bỏ số ảo i.
sin(7x)=7cos6(x)sin(x)-35cos4(x)sin3(x)+21cos2(x)sin5(x)-sin7(x)
Nhập bài toán CỦA BẠN
using Amazon.Auth.AccessControlPolicy;
Mathway yêu cầu javascript và một trình duyệt hiện đại.
 [x2  12  π  xdx ] 
AmazonPay