Ví dụ
,
Bước 1
Định lý giá trị trung gian cho biết, nếu là hàm liên tục có giá trị thực trên khoảng , và là một số nằm giữa và , thì có một ở trong khoảng sao cho .
Bước 2
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 3
Nâng lên lũy thừa .
Bước 4
Nâng lên lũy thừa .
Bước 5
Bước 5.1
Viết lại phương trình ở dạng .
Bước 5.2
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 5.3
Rút gọn .
Bước 5.3.1
Viết lại ở dạng .
Bước 5.3.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực.
Bước 6
Định lý giá trị trung gian khẳng định rằng có một nghiệm trên khoảng vì là một hàm số liên tục trên .
Các nghiệm trong khoảng nằm ở .
Bước 7