Đại số tuyến tính Ví dụ
x+3y-z=4 , 3y-z=0 , x-y+5z=0
Bước 1
Write the system as a matrix.
[13-1403-101-150]
Bước 2
Bước 2.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Bước 2.1.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[13-1403-101-1-1-35+10-4]
Bước 2.1.2
Rút gọn R3.
[13-1403-100-46-4]
[13-1403-100-46-4]
Bước 2.2
Multiply each element of R2 by 13 to make the entry at 2,2 a 1.
Bước 2.2.1
Multiply each element of R2 by 13 to make the entry at 2,2 a 1.
[13-140333-13030-46-4]
Bước 2.2.2
Rút gọn R2.
[13-1401-1300-46-4]
[13-1401-1300-46-4]
Bước 2.3
Perform the row operation R3=R3+4R2 to make the entry at 3,2 a 0.
Bước 2.3.1
Perform the row operation R3=R3+4R2 to make the entry at 3,2 a 0.
[13-1401-1300+4⋅0-4+4⋅16+4(-13)-4+4⋅0]
Bước 2.3.2
Rút gọn R3.
[13-1401-13000143-4]
[13-1401-13000143-4]
Bước 2.4
Multiply each element of R3 by 314 to make the entry at 3,3 a 1.
Bước 2.4.1
Multiply each element of R3 by 314 to make the entry at 3,3 a 1.
[13-1401-130314⋅0314⋅0314⋅143314⋅-4]
Bước 2.4.2
Rút gọn R3.
[13-1401-130001-67]
[13-1401-130001-67]
Bước 2.5
Perform the row operation R2=R2+13R3 to make the entry at 2,3 a 0.
Bước 2.5.1
Perform the row operation R2=R2+13R3 to make the entry at 2,3 a 0.
[13-140+13⋅01+13⋅0-13+13⋅10+13(-67)001-67]
Bước 2.5.2
Rút gọn R2.
[13-14010-27001-67]
[13-14010-27001-67]
Bước 2.6
Perform the row operation R1=R1+R3 to make the entry at 1,3 a 0.
Bước 2.6.1
Perform the row operation R1=R1+R3 to make the entry at 1,3 a 0.
[1+03+0-1+1⋅14-67010-27001-67]
Bước 2.6.2
Rút gọn R1.
[130227010-27001-67]
[130227010-27001-67]
Bước 2.7
Perform the row operation R1=R1-3R2 to make the entry at 1,2 a 0.
Bước 2.7.1
Perform the row operation R1=R1-3R2 to make the entry at 1,2 a 0.
[1-3⋅03-3⋅10-3⋅0227-3(-27)010-27001-67]
Bước 2.7.2
Rút gọn R1.
[1004010-27001-67]
[1004010-27001-67]
[1004010-27001-67]
Bước 3
Use the result matrix to declare the final solution to the system of equations.
x=4
y=-27
z=-67
Bước 4
The solution is the set of ordered pairs that make the system true.
(4,-27,-67)