Toán hữu hạn Ví dụ

Tìm các nghiệm/các điểm zero bằng phương pháp kiểm tra nghiệm hữu tỉ
x210x+9
Bước 1
Nếu một hàm đa thức có các hệ số là số nguyên, thì mọi điểm zero hữu tỉ sẽ có dạng pq trong đó p là một thừa số của hằng số và q là một thừa số của hệ số cao nhất.
p=±1,±3,±9
q=±1
Bước 2
Tìm tất cả các tổ hợp của ±pq. Đây là những nghiệm có thể có của các hàm số đa thức.
±1,±3,±9
Bước 3
Thay từng nghiệm có thể có vào đa thức để tìm các nghiệm thực. Rút gọn để kiểm tra xem giá trị có phải là 0, có nghĩa là nó là một nghiệm.
(1)2101+9
Bước 4
Rút gọn biểu thức. Trong trường hợp này, biểu thức bằng 0 vì vậy x=1 là một căn của đa thức.
Nhấp để xem thêm các bước...
Bước 4.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 4.1.1
Một mũ bất kỳ số nào là một.
1101+9
Bước 4.1.2
Nhân 10 với 1.
110+9
110+9
Bước 4.2
Rút gọn bằng cách cộng và trừ.
Nhấp để xem thêm các bước...
Bước 4.2.1
Trừ 10 khỏi 1.
9+9
Bước 4.2.2
Cộng 99.
0
0
0
Bước 5
1 là một nghiệm đã biết, chia đa thức cho x1 để tìm đa thức thương. Đa thức này sau đó có thể được sử dụng để tìm các nghiệm còn lại.
x210x+9x1
Bước 6
Tiếp theo, tìm các nghiệm của đa thức còn lại. Bậc của đa thức đã bị giảm xuống 1.
Nhấp để xem thêm các bước...
Bước 6.1
Đặt các số đại diện cho số chia và số bị chia vào cấu hình giống như một phép chia.
11109
  
Bước 6.2
Số đầu tiên trong số bị chia (1) được đặt vào vị trí đầu tiên của phần kết quả (bên dưới đường thẳng ngang).
11109
  
1
Bước 6.3
Nhân số mới nhất trong kết quả (1) với số chia (1) và đặt kết quả của (1) dưới số hạng tiếp theo trong số bị chia (10).
11109
 1 
1
Bước 6.4
Cộng tích của phép nhân và số từ số bị chia sau đó đặt kết quả vào vị trí tiếp theo ở dòng kết quả.
11109
 1 
19
Bước 6.5
Nhân số mới nhất trong kết quả (9) với số chia (1) và đặt kết quả của (9) dưới số hạng tiếp theo trong số bị chia (9).
11109
 19
19
Bước 6.6
Cộng tích của phép nhân và số từ số bị chia sau đó đặt kết quả vào vị trí tiếp theo ở dòng kết quả.
11109
 19
190
Bước 6.7
Tất cả các số trừ số cuối cùng trở thành hệ số của đa thức thương. Giá trị cuối cùng trong dòng kết quả là số dư.
(1)x9
Bước 6.8
Rút gọn đa thức thương.
x9
x9
Bước 7
Cộng 9 cho cả hai vế của phương trình.
x=9
Bước 8
Đa thức có thể được viết dưới dạng một tập hợp các thừa số tuyến tính.
(x1)(x9)
Bước 9
Đây là các nghiệm (các điểm zero) của đa thức x210x+9.
x=1,9
Bước 10
Nhập bài toán CỦA BẠN
Mathway yêu cầu javascript và một trình duyệt hiện đại.
 x2  12  π  xdx  
AmazonPay