Giải tích Ví dụ

Bước 1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1.1
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 1.1.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.1.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.2.3
Nhân với .
Bước 1.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.3.3
Nhân với .
Bước 1.2
Đạo hàm bậc nhất của đối với .
Bước 2
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 2.1
Cho đạo hàm bằng .
Bước 2.2
Phân tích vế trái của phương trình thành thừa số.
Nhấp để xem thêm các bước...
Bước 2.2.1
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 2.2.1.1
Đưa ra ngoài .
Bước 2.2.1.2
Đưa ra ngoài .
Bước 2.2.1.3
Đưa ra ngoài .
Bước 2.2.1.4
Đưa ra ngoài .
Bước 2.2.1.5
Đưa ra ngoài .
Bước 2.2.2
Phân tích thành thừa số.
Nhấp để xem thêm các bước...
Bước 2.2.2.1
Phân tích thành thừa số bằng phương pháp kiểm tra nghiệm hữu tỉ.
Nhấp để xem thêm các bước...
Bước 2.2.2.1.1
Nếu một hàm đa thức có các hệ số là số nguyên, thì mọi điểm zero hữu tỉ sẽ có dạng trong đó là một thừa số của hằng số và là một thừa số của hệ số cao nhất.
Bước 2.2.2.1.2
Tìm tất cả các tổ hợp của . Đây là những nghiệm có thể có của các hàm số đa thức.
Bước 2.2.2.1.3
Thay và rút gọn biểu thức. Trong trường hợp này, biểu thức bằng vì vậy là một nghiệm của đa thức.
Nhấp để xem thêm các bước...
Bước 2.2.2.1.3.1
Thay vào đa thức.
Bước 2.2.2.1.3.2
Nâng lên lũy thừa .
Bước 2.2.2.1.3.3
Cộng .
Bước 2.2.2.1.3.4
Trừ khỏi .
Bước 2.2.2.1.4
là một nghiệm đã biết, chia đa thức cho để tìm thương đa thức. Đa thức này sau đó có thể được sử dụng để tìm các nghiệm còn lại.
Bước 2.2.2.1.5
Chia cho .
Nhấp để xem thêm các bước...
Bước 2.2.2.1.5.1
Lập các đa thức được chia. Nếu không có đủ số hạng cho mọi số mũ, hãy chèn một số hạng có giá trị .
-++-
Bước 2.2.2.1.5.2
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
-++-
Bước 2.2.2.1.5.3
Nhân số hạng thương số mới với số chia.
-++-
+-
Bước 2.2.2.1.5.4
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
-++-
-+
Bước 2.2.2.1.5.5
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
-++-
-+
+
Bước 2.2.2.1.5.6
Đưa các số hạng tiếp theo từ biểu thức bị chia ban đầu xuống dưới biểu thức bị chia hiện tại.
-++-
-+
++
Bước 2.2.2.1.5.7
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
+
-++-
-+
++
Bước 2.2.2.1.5.8
Nhân số hạng thương số mới với số chia.
+
-++-
-+
++
+-
Bước 2.2.2.1.5.9
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
+
-++-
-+
++
-+
Bước 2.2.2.1.5.10
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
+
-++-
-+
++
-+
+
Bước 2.2.2.1.5.11
Đưa các số hạng tiếp theo từ biểu thức bị chia ban đầu xuống dưới biểu thức bị chia hiện tại.
+
-++-
-+
++
-+
+-
Bước 2.2.2.1.5.12
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
++
-++-
-+
++
-+
+-
Bước 2.2.2.1.5.13
Nhân số hạng thương số mới với số chia.
++
-++-
-+
++
-+
+-
+-
Bước 2.2.2.1.5.14
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
++
-++-
-+
++
-+
+-
-+
Bước 2.2.2.1.5.15
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
++
-++-
-+
++
-+
+-
-+
Bước 2.2.2.1.5.16
Vì số dư là , nên câu trả lời cuối cùng là thương.
Bước 2.2.2.1.6
Viết ở dạng một tập hợp các thừa số.
Bước 2.2.2.2
Loại bỏ các dấu ngoặc đơn không cần thiết.
Bước 2.3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 2.4
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 2.4.1
Đặt bằng với .
Bước 2.4.2
Cộng cho cả hai vế của phương trình.
Bước 2.5
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 2.5.1
Đặt bằng với .
Bước 2.5.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 2.5.2.1
Sử dụng công thức bậc hai để tìm các đáp án.
Bước 2.5.2.2
Thay các giá trị , , và vào công thức bậc hai và giải tìm .
Bước 2.5.2.3
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.5.2.3.1
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 2.5.2.3.1.1
Một mũ bất kỳ số nào là một.
Bước 2.5.2.3.1.2
Nhân .
Nhấp để xem thêm các bước...
Bước 2.5.2.3.1.2.1
Nhân với .
Bước 2.5.2.3.1.2.2
Nhân với .
Bước 2.5.2.3.1.3
Trừ khỏi .
Bước 2.5.2.3.1.4
Viết lại ở dạng .
Bước 2.5.2.3.1.5
Viết lại ở dạng .
Bước 2.5.2.3.1.6
Viết lại ở dạng .
Bước 2.5.2.3.2
Nhân với .
Bước 2.5.2.4
Rút gọn biểu thức để giải tìm phần của .
Nhấp để xem thêm các bước...
Bước 2.5.2.4.1
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 2.5.2.4.1.1
Một mũ bất kỳ số nào là một.
Bước 2.5.2.4.1.2
Nhân .
Nhấp để xem thêm các bước...
Bước 2.5.2.4.1.2.1
Nhân với .
Bước 2.5.2.4.1.2.2
Nhân với .
Bước 2.5.2.4.1.3
Trừ khỏi .
Bước 2.5.2.4.1.4
Viết lại ở dạng .
Bước 2.5.2.4.1.5
Viết lại ở dạng .
Bước 2.5.2.4.1.6
Viết lại ở dạng .
Bước 2.5.2.4.2
Nhân với .
Bước 2.5.2.4.3
Chuyển đổi thành .
Bước 2.5.2.4.4
Viết lại ở dạng .
Bước 2.5.2.4.5
Đưa ra ngoài .
Bước 2.5.2.4.6
Đưa ra ngoài .
Bước 2.5.2.4.7
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.5.2.5
Rút gọn biểu thức để giải tìm phần của .
Nhấp để xem thêm các bước...
Bước 2.5.2.5.1
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 2.5.2.5.1.1
Một mũ bất kỳ số nào là một.
Bước 2.5.2.5.1.2
Nhân .
Nhấp để xem thêm các bước...
Bước 2.5.2.5.1.2.1
Nhân với .
Bước 2.5.2.5.1.2.2
Nhân với .
Bước 2.5.2.5.1.3
Trừ khỏi .
Bước 2.5.2.5.1.4
Viết lại ở dạng .
Bước 2.5.2.5.1.5
Viết lại ở dạng .
Bước 2.5.2.5.1.6
Viết lại ở dạng .
Bước 2.5.2.5.2
Nhân với .
Bước 2.5.2.5.3
Chuyển đổi thành .
Bước 2.5.2.5.4
Viết lại ở dạng .
Bước 2.5.2.5.5
Đưa ra ngoài .
Bước 2.5.2.5.6
Đưa ra ngoài .
Bước 2.5.2.5.7
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.5.2.6
Câu trả lời cuối cùng là sự kết hợp của cả hai đáp án.
Bước 2.6
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 3
Các giá trị làm cho đạo hàm bằng .
Bước 4
Sau khi tìm điểm khiến cho đạo hàm bằng với hoặc không xác định, sử dụng khoảng để kiểm tra nơi tăng và nơi nó giảm là .
Bước 5
Thay một giá trị từ khoảng vào đạo hàm để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Bước 5.1
Thay thế biến bằng trong biểu thức.
Bước 5.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 5.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 5.2.1.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 5.2.1.2
Nhân với .
Bước 5.2.1.3
Nhân với .
Bước 5.2.2
Rút gọn bằng cách cộng và trừ.
Nhấp để xem thêm các bước...
Bước 5.2.2.1
Cộng .
Bước 5.2.2.2
Trừ khỏi .
Bước 5.2.3
Câu trả lời cuối cùng là .
Bước 5.3
Tại đạo hàm là . Vì đây là số âm, hàm số giảm trên .
Giảm trên
Giảm trên
Bước 6
Thay một giá trị từ khoảng vào đạo hàm để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Bước 6.1
Thay thế biến bằng trong biểu thức.
Bước 6.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 6.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 6.2.1.1
Nâng lên lũy thừa .
Bước 6.2.1.2
Nhân với .
Bước 6.2.1.3
Nhân với .
Bước 6.2.2
Rút gọn bằng cách cộng và trừ.
Nhấp để xem thêm các bước...
Bước 6.2.2.1
Cộng .
Bước 6.2.2.2
Trừ khỏi .
Bước 6.2.3
Câu trả lời cuối cùng là .
Bước 6.3
Tại đạo hàm là . Vì đây là số dương, hàm số tăng trên .
Tăng trên
Tăng trên
Bước 7
Liệt kê các khoảng trong đó hàm tăng và giảm.
Tăng trên:
Giảm trên:
Bước 8
Nhập bài toán CỦA BẠN
Mathway yêu cầu javascript và một trình duyệt hiện đại.