Đại số Ví dụ
S⎛⎜⎝⎡⎢⎣abc⎤⎥⎦⎞⎟⎠=⎡⎢⎣a−2b−c3a−b+2ca+b+2c⎤⎥⎦
Bước 1
Hạt nhân của một phép biến đổi là một vectơ làm cho phép biến đổi bằng vectơ không (nghịch ảnh của phép biến đổi).
⎡⎢⎣a−2b−c3a−b+2ca+b+2c⎤⎥⎦=0
Bước 2
Tạo một hệ phương trình từ phương trình vectơ.
a−2b−c=0
3a−b+2c=0
a+b+2c=0
Bước 3
Write the system as a matrix.
⎡⎢
⎢⎣1−2−103−1201120⎤⎥
⎥⎦
Bước 4
Bước 4.1
Perform the row operation R2=R2−3R1 to make the entry at 2,1 a 0.
Bước 4.1.1
Perform the row operation R2=R2−3R1 to make the entry at 2,1 a 0.
⎡⎢
⎢⎣1−2−103−3⋅1−1−3⋅−22−3⋅−10−3⋅01120⎤⎥
⎥⎦
Bước 4.1.2
Rút gọn R2.
⎡⎢
⎢⎣1−2−1005501120⎤⎥
⎥⎦
⎡⎢
⎢⎣1−2−1005501120⎤⎥
⎥⎦
Bước 4.2
Perform the row operation R3=R3−R1 to make the entry at 3,1 a 0.
Bước 4.2.1
Perform the row operation R3=R3−R1 to make the entry at 3,1 a 0.
⎡⎢
⎢⎣1−2−1005501−11+22+10−0⎤⎥
⎥⎦
Bước 4.2.2
Rút gọn R3.
⎡⎢
⎢⎣1−2−1005500330⎤⎥
⎥⎦
⎡⎢
⎢⎣1−2−1005500330⎤⎥
⎥⎦
Bước 4.3
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
Bước 4.3.1
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
⎡⎢
⎢⎣1−2−10055555050330⎤⎥
⎥⎦
Bước 4.3.2
Rút gọn R2.
⎡⎢
⎢⎣1−2−1001100330⎤⎥
⎥⎦
⎡⎢
⎢⎣1−2−1001100330⎤⎥
⎥⎦
Bước 4.4
Perform the row operation R3=R3−3R2 to make the entry at 3,2 a 0.
Bước 4.4.1
Perform the row operation R3=R3−3R2 to make the entry at 3,2 a 0.
⎡⎢
⎢⎣1−2−1001100−3⋅03−3⋅13−3⋅10−3⋅0⎤⎥
⎥⎦
Bước 4.4.2
Rút gọn R3.
⎡⎢
⎢⎣1−2−1001100000⎤⎥
⎥⎦
⎡⎢
⎢⎣1−2−1001100000⎤⎥
⎥⎦
Bước 4.5
Perform the row operation R1=R1+2R2 to make the entry at 1,2 a 0.
Bước 4.5.1
Perform the row operation R1=R1+2R2 to make the entry at 1,2 a 0.
⎡⎢
⎢⎣1+2⋅0−2+2⋅1−1+2⋅10+2⋅001100000⎤⎥
⎥⎦
Bước 4.5.2
Rút gọn R1.
⎡⎢
⎢⎣101001100000⎤⎥
⎥⎦
⎡⎢
⎢⎣101001100000⎤⎥
⎥⎦
⎡⎢
⎢⎣101001100000⎤⎥
⎥⎦
Bước 5
Use the result matrix to declare the final solution to the system of equations.
a+c=0
b+c=0
0=0
Bước 6
Write a solution vector by solving in terms of the free variables in each row.
⎡⎢⎣abc⎤⎥⎦=⎡⎢⎣−c−cc⎤⎥⎦
Bước 7
Write the solution as a linear combination of vectors.
⎡⎢⎣abc⎤⎥⎦=c⎡⎢⎣−1−11⎤⎥⎦
Bước 8
Write as a solution set.
⎧⎪⎨⎪⎩c⎡⎢⎣−1−11⎤⎥⎦∣∣
∣∣c∈R⎫⎪⎬⎪⎭
Bước 9
The solution is the set of vectors created from the free variables of the system.
⎧⎪⎨⎪⎩⎡⎢⎣−1−11⎤⎥⎦⎫⎪⎬⎪⎭
Bước 10
Hạ nhân của S là không gian con ⎧⎪⎨⎪⎩⎡⎢⎣−1−11⎤⎥⎦⎫⎪⎬⎪⎭.
K(S)=⎧⎪⎨⎪⎩⎡⎢⎣−1−11⎤⎥⎦⎫⎪⎬⎪⎭