Введите задачу...
Тригонометрия Примеры
Этап 1
Перепишем уравнение в виде .
Этап 2
Этап 2.1
Упростим числитель.
Этап 2.1.1
Возведем в степень .
Этап 2.1.2
Возведем в степень .
Этап 2.1.3
Умножим на .
Этап 2.1.4
Возведем в степень .
Этап 2.1.5
Умножим на .
Этап 2.1.6
Вычтем из .
Этап 2.1.7
Вычтем из .
Этап 2.2
Упростим знаменатель.
Этап 2.2.1
Умножим на .
Этап 2.2.2
Умножим на .
Этап 2.3
Сократим выражение, путем отбрасывания общих множителей.
Этап 2.3.1
Сократим общий множитель и .
Этап 2.3.1.1
Вынесем множитель из .
Этап 2.3.1.2
Сократим общие множители.
Этап 2.3.1.2.1
Вынесем множитель из .
Этап 2.3.1.2.2
Сократим общий множитель.
Этап 2.3.1.2.3
Перепишем это выражение.
Этап 2.3.2
Вынесем знак минуса перед дробью.
Этап 3
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 4
Этап 4.1
Найдем значение .
Этап 5
Функция косинуса отрицательна во втором и третьем квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 6
Этап 6.1
Умножим на .
Этап 6.2
Вычтем из .
Этап 7
Этап 7.1
Период функции можно вычислить по формуле .
Этап 7.2
Заменим на в формуле периода.
Этап 7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 7.4
Разделим на .
Этап 8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого