Тригонометрия Примеры

Risolvere per t 2.25=-0.75sin(2pit)+2.5
Этап 1
Перепишем уравнение в виде .
Этап 2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Вычтем из обеих частей уравнения.
Этап 2.2
Вычтем из .
Этап 3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Разделим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Разделим на .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Разделим на .
Этап 4
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 5
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.1
Найдем значение .
Этап 6
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Разделим каждый член на .
Этап 6.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Сократим общий множитель.
Этап 6.2.1.2
Перепишем это выражение.
Этап 6.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Сократим общий множитель.
Этап 6.2.2.2
Разделим на .
Этап 6.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Заменим приближением.
Этап 6.3.2
Умножим на .
Этап 6.3.3
Разделим на .
Этап 7
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 8
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 8.1
Вычтем из .
Этап 8.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Разделим каждый член на .
Этап 8.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.2.1.1
Сократим общий множитель.
Этап 8.2.2.1.2
Перепишем это выражение.
Этап 8.2.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.2.2.1
Сократим общий множитель.
Этап 8.2.2.2.2
Разделим на .
Этап 8.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.3.1
Заменим приближением.
Этап 8.2.3.2
Умножим на .
Этап 8.2.3.3
Разделим на .
Этап 9
Найдем период .
Нажмите для увеличения количества этапов...
Этап 9.1
Период функции можно вычислить по формуле .
Этап 9.2
Заменим на в формуле периода.
Этап 9.3
приблизительно равно . Это положительное число, поэтому вычтем абсолютное значение.
Этап 9.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 9.4.1
Сократим общий множитель.
Этап 9.4.2
Перепишем это выражение.
Этап 9.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 9.5.1
Сократим общий множитель.
Этап 9.5.2
Перепишем это выражение.
Этап 10
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого