Тригонометрия Примеры

Решить на интервале cos(theta)-4=-3 , [0,2pi)
,
Этап 1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Добавим к обеим частям уравнения.
Этап 1.2
Добавим и .
Этап 2
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.1
Точное значение : .
Этап 4
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 5
Вычтем из .
Этап 6
Найдем период .
Нажмите для увеличения количества этапов...
Этап 6.1
Период функции можно вычислить по формуле .
Этап 6.2
Заменим на в формуле периода.
Этап 6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.4
Разделим на .
Этап 7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 8
Объединим ответы.
, для любого целого
Этап 9
Подставим вместо и упростим, чтобы проверить, содержится ли решение в .
Нажмите для увеличения количества этапов...
Этап 9.1
Подставим вместо .
Этап 9.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 9.2.1
Умножим на .
Этап 9.2.2
Умножим на .
Этап 9.3
Интервал содержит .