Введите задачу...
Тригонометрия Примеры
,
Этап 1
Этап 1.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
и
Этап 1.2
Упростим правую часть.
Этап 1.2.1
Точное значение : .
и
и
Этап 1.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
и
Этап 1.4
Вычтем из .
и
Этап 1.5
Найдем период .
Этап 1.5.1
Период функции можно вычислить по формуле .
Этап 1.5.2
Заменим на в формуле периода.
Этап 1.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 1.5.4
Разделим на .
Этап 1.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
и
Этап 1.7
Объединим ответы.
и
Этап 1.8
Используем каждый корень для создания контрольных интервалов.
и
Этап 1.9
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Этап 1.9.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 1.9.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
и
Этап 1.9.1.2
Заменим на в исходном неравенстве.
и
Этап 1.9.1.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
Истина и
Истина и
Этап 1.9.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 1.9.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
и
Этап 1.9.2.2
Заменим на в исходном неравенстве.
и
Этап 1.9.2.3
Левая часть не больше правой части , значит, данное утверждение ложно.
Ложь и
Ложь и
Этап 1.9.3
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
False and
Истина
False and
Этап 1.10
Решение состоит из всех истинных интервалов.
и
и
Этап 2
Этап 2.1
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
и
Этап 2.2
Упростим правую часть.
Этап 2.2.1
Точное значение : .
и
и
Этап 2.3
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
и
Этап 2.4
Упростим .
Этап 2.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
и
Этап 2.4.2
Объединим дроби.
Этап 2.4.2.1
Объединим и .
и
Этап 2.4.2.2
Объединим числители над общим знаменателем.
и
и
Этап 2.4.3
Упростим числитель.
Этап 2.4.3.1
Умножим на .
и
Этап 2.4.3.2
Вычтем из .
и
и
и
Этап 2.5
Найдем период .
Этап 2.5.1
Период функции можно вычислить по формуле .
Этап 2.5.2
Заменим на в формуле периода.
Этап 2.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 2.5.4
Разделим на .
Этап 2.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
и
Этап 2.7
Объединим ответы.
и
Этап 2.8
Используем каждый корень для создания контрольных интервалов.
и
Этап 2.9
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Этап 2.9.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 2.9.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
и
Этап 2.9.1.2
Заменим на в исходном неравенстве.
и
Этап 2.9.1.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
and True
and True
Этап 2.9.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 2.9.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
и
Этап 2.9.2.2
Заменим на в исходном неравенстве.
и
Этап 2.9.2.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
and False
and False
Этап 2.9.3
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
and True
Ложь
and True
Ложь
Этап 2.10
Решение состоит из всех истинных интервалов.
и
и
Этап 3