Введите задачу...
Тригонометрия Примеры
,
Этап 1
Синус принимает положительные значения в первом и втором квадрантах. Котангенс принимает положительные значения в первом и третьем квадрантах. Множество решений для ограничивается первым квадрантом, так как это единственный квадрант, найденный в обоих множествах.
Решение находится в первом квадранте.
Этап 2
Воспользуемся определением котангенса, чтобы найти известные стороны прямоугольного треугольника, вписанного в единичную окружность. Квадрант определяет знак каждого значения.
Этап 3
Найдем гипотенузу треугольника в единичной окружности. Поскольку известны противолежащая и прилежащая стороны, используем теорему Пифагора, чтобы найти оставшуюся сторону.
Этап 4
Заменим известные значения в уравнении.
Этап 5
Этап 5.1
Возведем в степень .
Гипотенуза
Этап 5.2
Возведем в степень .
Гипотенуза
Этап 5.3
Добавим и .
Гипотенуза
Этап 5.4
Перепишем в виде .
Гипотенуза
Этап 5.5
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Гипотенуза
Гипотенуза
Этап 6
Этап 6.1
Воспользуемся определением синуса, чтобы найти значение .
Этап 6.2
Подставим известные значения.
Этап 7
Этап 7.1
Воспользуемся определением косинуса, чтобы найти значение .
Этап 7.2
Подставим известные значения.
Этап 8
Этап 8.1
Воспользуемся определением тангенса, чтобы найти значение .
Этап 8.2
Подставим известные значения.
Этап 9
Этап 9.1
Воспользуемся определением секанса, чтобы найти значение .
Этап 9.2
Подставим известные значения.
Этап 10
Этап 10.1
Воспользуемся определением косеканса, чтобы найти значение .
Этап 10.2
Подставим известные значения.
Этап 11
Это решение для каждого тригонометрического значения.