Тригонометрия Примеры

Решить треугольник tri{}{30}{1}{60}{}{90}
Этап 1
Найдем .
Нажмите для увеличения количества этапов...
Этап 1.1
Косинус угла равен отношению прилежащей стороны к гипотенузе.
Этап 1.2
Подставим название каждой стороны в определение функции косинуса.
Этап 1.3
Составим уравнение, чтобы найти прилежащий катет, в данном случае .
Этап 1.4
Подставим значения каждой переменной в формулу для косинуса.
Этап 1.5
Умножим на .
Этап 2
Найдем последнюю сторону треугольника, используя теорему Пифагора.
Нажмите для увеличения количества этапов...
Этап 2.1
Применим теорему Пифагора, чтобы найти неизвестную сторону. Для любого прямоугольного треугольника площадь квадрата, построенного на гипотенузе (сторона противолежащая прямому углу), равна сумме площадей квадратов, построенных на катетах (две другие стороны, помимо гипотенузы).
Этап 2.2
Решим уравнение относительно .
Этап 2.3
Подставим фактические значения в уравнение.
Этап 2.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Единица в любой степени равна единице.
Этап 2.4.2
Применим правило умножения к .
Этап 2.5
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.5.1
С помощью запишем в виде .
Этап 2.5.2
Применим правило степени и перемножим показатели, .
Этап 2.5.3
Объединим и .
Этап 2.5.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.5.4.1
Сократим общий множитель.
Этап 2.5.4.2
Перепишем это выражение.
Этап 2.5.5
Найдем экспоненту.
Этап 2.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Возведем в степень .
Этап 2.6.2
Запишем в виде дроби с общим знаменателем.
Этап 2.6.3
Объединим числители над общим знаменателем.
Этап 2.6.4
Вычтем из .
Этап 2.7
Перепишем в виде .
Этап 2.8
Любой корень из равен .
Этап 2.9
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 2.9.1
Перепишем в виде .
Этап 2.9.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3
Это результаты для всех углов и сторон данного треугольника.