Введите задачу...
Тригонометрия Примеры
Этап 1
Объединим и .
Этап 2
Вертикальные асимптоты функции находятся в точках , где — целое число. Используя основной период для , найдем вертикальные асимптоты для . Положив аргумент тангенса, , равным в выражении , найдем положение вертикальной асимптоты для .
Этап 3
Этап 3.1
Умножим обе части уравнения на .
Этап 3.2
Упростим обе части уравнения.
Этап 3.2.1
Упростим левую часть.
Этап 3.2.1.1
Упростим .
Этап 3.2.1.1.1
Сократим общий множитель .
Этап 3.2.1.1.1.1
Сократим общий множитель.
Этап 3.2.1.1.1.2
Перепишем это выражение.
Этап 3.2.1.1.2
Сократим общий множитель .
Этап 3.2.1.1.2.1
Вынесем множитель из .
Этап 3.2.1.1.2.2
Сократим общий множитель.
Этап 3.2.1.1.2.3
Перепишем это выражение.
Этап 3.2.2
Упростим правую часть.
Этап 3.2.2.1
Умножим .
Этап 3.2.2.1.1
Умножим на .
Этап 3.2.2.1.2
Умножим на .
Этап 4
Приравняем аргумент функции тангенса к .
Этап 5
Этап 5.1
Умножим обе части уравнения на .
Этап 5.2
Упростим обе части уравнения.
Этап 5.2.1
Упростим левую часть.
Этап 5.2.1.1
Упростим .
Этап 5.2.1.1.1
Сократим общий множитель .
Этап 5.2.1.1.1.1
Сократим общий множитель.
Этап 5.2.1.1.1.2
Перепишем это выражение.
Этап 5.2.1.1.2
Сократим общий множитель .
Этап 5.2.1.1.2.1
Вынесем множитель из .
Этап 5.2.1.1.2.2
Сократим общий множитель.
Этап 5.2.1.1.2.3
Перепишем это выражение.
Этап 5.2.2
Упростим правую часть.
Этап 5.2.2.1
Умножим .
Этап 5.2.2.1.1
Умножим на .
Этап 5.2.2.1.2
Умножим на .
Этап 6
Основной период находится на промежутке , где и являются вертикальными асимптотами.
Этап 7
Этап 7.1
приблизительно равно . Это положительное число, поэтому вычтем абсолютное значение.
Этап 7.2
Умножим числитель на величину, обратную знаменателю.
Этап 7.3
Объединим и .
Этап 7.4
Перенесем влево от .
Этап 8
Вертикальные асимптоты находятся в точках , и в каждой точке , где ― целое число.
Этап 9
У тангенса есть только вертикальные асимптоты.
Нет горизонтальных асимптот
Нет наклонных асимптот
Вертикальные асимптоты: , где — целое число
Этап 10