Тригонометрия Примеры

Найти все комплексные решения -sin(x)=-cos(x)^2-1
Этап 1
Перенесем все выражения в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Добавим к обеим частям уравнения.
Этап 1.2
Добавим к обеим частям уравнения.
Этап 2
Заменим на .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Применим формулу Пифагора.
Этап 3.2
Заменим на на основе тождества .
Этап 3.3
Добавим и .
Этап 3.4
Вычтем из обеих частей уравнения.
Этап 3.5
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Разделим каждый член на .
Этап 3.5.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.5.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.5.2.2
Разделим на .
Этап 3.5.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.5.3.1
Разделим на .
Этап 3.6
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.7
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 3.7.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.7.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.7.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3.8
Выпишем каждое выражение, чтобы найти решение для .
Этап 3.9
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 3.9.1
Множество значений синуса: . Поскольку не попадает в этот диапазон, решение отсутствует.
Нет решения
Нет решения
Этап 3.10
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 3.10.1
Множество значений синуса: . Поскольку не попадает в этот диапазон, решение отсутствует.
Нет решения
Нет решения
Нет решения