Тригонометрия Примеры

Этап 1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 2
Развернем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем в виде .
Этап 2.2
Развернем , вынося из логарифма.
Этап 3
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.1
Применим свойство дистрибутивности.
Этап 4
Изменим порядок и .
Этап 5
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 6
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 7
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 7.1
Вычтем из обеих частей уравнения.
Этап 7.2
Добавим к обеим частям уравнения.
Этап 8
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Разделим каждый член на .
Этап 8.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Сократим общий множитель.
Этап 8.2.1.2
Разделим на .
Этап 8.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 8.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 8.3.1.1
Вынесем знак минуса перед дробью.
Этап 8.3.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.3.1.2.1
Сократим общий множитель.
Этап 8.3.1.2.2
Разделим на .
Этап 9
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: