Введите задачу...
Тригонометрия Примеры
Этап 1
Этап 1.1
Разложим на множители, используя теорему о рациональных корнях.
Этап 1.1.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где — делитель константы, а — делитель старшего коэффициента.
Этап 1.1.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 1.1.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Этап 1.1.3.1
Подставим в многочлен.
Этап 1.1.3.2
Возведем в степень .
Этап 1.1.3.3
Умножим на .
Этап 1.1.3.4
Возведем в степень .
Этап 1.1.3.5
Умножим на .
Этап 1.1.3.6
Добавим и .
Этап 1.1.3.7
Возведем в степень .
Этап 1.1.3.8
Умножим на .
Этап 1.1.3.9
Добавим и .
Этап 1.1.3.10
Умножим на .
Этап 1.1.3.11
Добавим и .
Этап 1.1.3.12
Вычтем из .
Этап 1.1.4
Поскольку — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 1.1.5
Разделим на .
Этап 1.1.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
+ | - | + | - | - |
Этап 1.1.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+ | - | + | - | - |
Этап 1.1.5.3
Умножим новое частное на делитель.
+ | - | + | - | - | |||||||||
+ | + |
Этап 1.1.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+ | - | + | - | - | |||||||||
- | - |
Этап 1.1.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- |
Этап 1.1.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + |
Этап 1.1.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | |||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + |
Этап 1.1.5.8
Умножим новое частное на делитель.
- | |||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
- | - |
Этап 1.1.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | |||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + |
Этап 1.1.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | |||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ |
Этап 1.1.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
- | |||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - |
Этап 1.1.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | + | ||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - |
Этап 1.1.5.13
Умножим новое частное на делитель.
- | + | ||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
+ | + |
Этап 1.1.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | + | ||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - |
Этап 1.1.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | + | ||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - | ||||||||||||
- |
Этап 1.1.5.16
Вынесем следующие члены из исходного делимого в текущее делимое.
- | + | ||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - | ||||||||||||
- | - |
Этап 1.1.5.17
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | + | - | |||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - | ||||||||||||
- | - |
Этап 1.1.5.18
Умножим новое частное на делитель.
- | + | - | |||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - | ||||||||||||
- | - | ||||||||||||
- | - |
Этап 1.1.5.19
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | + | - | |||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - | ||||||||||||
- | - | ||||||||||||
+ | + |
Этап 1.1.5.20
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | + | - | |||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - | ||||||||||||
- | - | ||||||||||||
+ | + | ||||||||||||
Этап 1.1.5.21
Поскольку остаток равен , окончательным ответом является частное.
Этап 1.1.6
Запишем в виде набора множителей.
Этап 1.2
Разложим на множители, используя теорему о рациональных корнях.
Этап 1.2.1
Разложим на множители, используя теорему о рациональных корнях.
Этап 1.2.1.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где — делитель константы, а — делитель старшего коэффициента.
Этап 1.2.1.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 1.2.1.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Этап 1.2.1.3.1
Подставим в многочлен.
Этап 1.2.1.3.2
Возведем в степень .
Этап 1.2.1.3.3
Умножим на .
Этап 1.2.1.3.4
Возведем в степень .
Этап 1.2.1.3.5
Умножим на .
Этап 1.2.1.3.6
Вычтем из .
Этап 1.2.1.3.7
Умножим на .
Этап 1.2.1.3.8
Добавим и .
Этап 1.2.1.3.9
Вычтем из .
Этап 1.2.1.4
Поскольку — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 1.2.1.5
Разделим на .
Этап 1.2.1.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
- | - | + | - |
Этап 1.2.1.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | - | + | - |
Этап 1.2.1.5.3
Умножим новое частное на делитель.
- | - | + | - | ||||||||
+ | - |
Этап 1.2.1.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | - | + | - | ||||||||
- | + |
Этап 1.2.1.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | - | + | - | ||||||||
- | + | ||||||||||
+ |
Этап 1.2.1.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + |
Этап 1.2.1.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+ | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + |
Этап 1.2.1.5.8
Умножим новое частное на делитель.
+ | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - |
Этап 1.2.1.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+ | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + |
Этап 1.2.1.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+ | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ |
Этап 1.2.1.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
+ | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
Этап 1.2.1.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+ | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
Этап 1.2.1.5.13
Умножим новое частное на делитель.
+ | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Этап 1.2.1.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+ | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + |
Этап 1.2.1.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+ | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Этап 1.2.1.5.16
Поскольку остаток равен , окончательным ответом является частное.
Этап 1.2.1.6
Запишем в виде набора множителей.
Этап 1.2.2
Избавимся от ненужных скобок.
Этап 2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3
Этап 3.1
Приравняем к .
Этап 3.2
Вычтем из обеих частей уравнения.
Этап 4
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Разделим каждый член на и упростим.
Этап 4.2.2.1
Разделим каждый член на .
Этап 4.2.2.2
Упростим левую часть.
Этап 4.2.2.2.1
Сократим общий множитель .
Этап 4.2.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.2.1.2
Разделим на .
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Этап 5.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 5.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 5.2.3
Упростим.
Этап 5.2.3.1
Упростим числитель.
Этап 5.2.3.1.1
Единица в любой степени равна единице.
Этап 5.2.3.1.2
Умножим .
Этап 5.2.3.1.2.1
Умножим на .
Этап 5.2.3.1.2.2
Умножим на .
Этап 5.2.3.1.3
Вычтем из .
Этап 5.2.3.1.4
Перепишем в виде .
Этап 5.2.3.1.5
Перепишем в виде .
Этап 5.2.3.1.6
Перепишем в виде .
Этап 5.2.3.2
Умножим на .
Этап 5.2.4
Окончательный ответ является комбинацией обоих решений.
Этап 6
Окончательным решением являются все значения, при которых верно.
Этап 7