Тригонометрия Примеры

Найти значение тригонометрической функции sin(x) , tan(x)=1/2
,
Этап 1
Воспользуемся определением тангенса, чтобы найти известные стороны прямоугольного треугольника, вписанного в единичную окружность. Квадрант определяет знак каждого значения.
Этап 2
Найдем гипотенузу треугольника в единичной окружности. Поскольку известны противолежащая и прилежащая стороны, используем теорему Пифагора, чтобы найти оставшуюся сторону.
Этап 3
Заменим известные значения в уравнении.
Этап 4
Упростим подкоренное выражение.
Нажмите для увеличения количества этапов...
Этап 4.1
Единица в любой степени равна единице.
Гипотенуза
Этап 4.2
Возведем в степень .
Гипотенуза
Этап 4.3
Добавим и .
Гипотенуза
Гипотенуза
Этап 5
Воспользуемся определением синуса, чтобы найти значение .
Этап 6
Подставим известные значения.
Этап 7
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.1
Умножим на .
Этап 7.2
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Умножим на .
Этап 7.2.2
Возведем в степень .
Этап 7.2.3
Возведем в степень .
Этап 7.2.4
Применим правило степени для объединения показателей.
Этап 7.2.5
Добавим и .
Этап 7.2.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 7.2.6.1
С помощью запишем в виде .
Этап 7.2.6.2
Применим правило степени и перемножим показатели, .
Этап 7.2.6.3
Объединим и .
Этап 7.2.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.6.4.1
Сократим общий множитель.
Этап 7.2.6.4.2
Перепишем это выражение.
Этап 7.2.6.5
Найдем экспоненту.
Этап 8
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: