Тригонометрия Примеры

Найти максимальное/минимальное значение y=sin(x)-6
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Производная по равна .
Этап 1.3
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.2
Добавим и .
Этап 2
Производная по равна .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 5
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.1
Точное значение : .
Этап 6
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 7
Упростим .
Нажмите для увеличения количества этапов...
Этап 7.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 7.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Объединим и .
Этап 7.2.2
Объединим числители над общим знаменателем.
Этап 7.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.3.1
Умножим на .
Этап 7.3.2
Вычтем из .
Этап 8
Решение уравнения .
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 10.1
Точное значение : .
Этап 10.2
Умножим на .
Этап 11
 — локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
 — локальный максимум
Этап 12
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 12.2.1
Точное значение : .
Этап 12.2.2
Вычтем из .
Этап 12.2.3
Окончательный ответ: .
Этап 13
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 14
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 14.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в четвертом квадранте.
Этап 14.2
Точное значение : .
Этап 14.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 14.3.1
Умножим на .
Этап 14.3.2
Умножим на .
Этап 15
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 16
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 16.1
Заменим в этом выражении переменную на .
Этап 16.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 16.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 16.2.1.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в четвертом квадранте.
Этап 16.2.1.2
Точное значение : .
Этап 16.2.1.3
Умножим на .
Этап 16.2.2
Вычтем из .
Этап 16.2.3
Окончательный ответ: .
Этап 17
Это локальные экстремумы .
 — локальный максимум
 — локальный минимум
Этап 18