Введите задачу...
Тригонометрия Примеры
Этап 1
Этап 1.1
Изолируем в левой части уравнения.
Этап 1.1.1
Перепишем уравнение в виде .
Этап 1.1.2
Разделим каждый член на и упростим.
Этап 1.1.2.1
Разделим каждый член на .
Этап 1.1.2.2
Упростим левую часть.
Этап 1.1.2.2.1
Сократим общий множитель .
Этап 1.1.2.2.1.1
Сократим общий множитель.
Этап 1.1.2.2.1.2
Разделим на .
Этап 1.1.2.3
Упростим правую часть.
Этап 1.1.2.3.1
Вынесем знак минуса перед дробью.
Этап 1.2
Составим полный квадрат для .
Этап 1.2.1
Применим форму , чтобы найти значения , и .
Этап 1.2.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.2.3
Найдем значение по формуле .
Этап 1.2.3.1
Подставим значения и в формулу .
Этап 1.2.3.2
Упростим правую часть.
Этап 1.2.3.2.1
Сократим общий множитель и .
Этап 1.2.3.2.1.1
Вынесем множитель из .
Этап 1.2.3.2.1.2
Сократим общие множители.
Этап 1.2.3.2.1.2.1
Сократим общий множитель.
Этап 1.2.3.2.1.2.2
Перепишем это выражение.
Этап 1.2.3.2.2
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.3.2.3
Умножим .
Этап 1.2.3.2.3.1
Умножим на .
Этап 1.2.3.2.3.2
Умножим на .
Этап 1.2.4
Найдем значение по формуле .
Этап 1.2.4.1
Подставим значения , и в формулу .
Этап 1.2.4.2
Упростим правую часть.
Этап 1.2.4.2.1
Упростим каждый член.
Этап 1.2.4.2.1.1
Возведение в любую положительную степень дает .
Этап 1.2.4.2.1.2
Упростим знаменатель.
Этап 1.2.4.2.1.2.1
Умножим на .
Этап 1.2.4.2.1.2.2
Объединим и .
Этап 1.2.4.2.1.3
Сократим выражение, путем отбрасывания общих множителей.
Этап 1.2.4.2.1.3.1
Сократим общий множитель и .
Этап 1.2.4.2.1.3.1.1
Вынесем множитель из .
Этап 1.2.4.2.1.3.1.2
Сократим общие множители.
Этап 1.2.4.2.1.3.1.2.1
Вынесем множитель из .
Этап 1.2.4.2.1.3.1.2.2
Сократим общий множитель.
Этап 1.2.4.2.1.3.1.2.3
Перепишем это выражение.
Этап 1.2.4.2.1.3.2
Вынесем знак минуса перед дробью.
Этап 1.2.4.2.1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.4.2.1.5
Умножим .
Этап 1.2.4.2.1.5.1
Умножим на .
Этап 1.2.4.2.1.5.2
Умножим на .
Этап 1.2.4.2.1.5.3
Умножим на .
Этап 1.2.4.2.2
Добавим и .
Этап 1.2.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.3
Приравняем к новой правой части.
Этап 2
Воспользуемся формой с выделенной вершиной , чтобы определить значения , и .
Этап 3
Найдем вершину .
Этап 4