Тригонометрия Примеры

Найти синус в заданной точке ((- квадратный корень из 5)/3,-2/3)
Этап 1
Чтобы найти угла между осью x и прямой, соединяющей точки и , нарисуем треугольник с вершинами в точках , и .
Противоположное:
Смежный:
Этап 2
Найдем гипотенузу, используя теорему Пифагора .
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем знак минуса перед дробью.
Этап 2.2
Применим правило степени для распределения показателей.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Применим правило умножения к .
Этап 2.2.2
Применим правило умножения к .
Этап 2.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Возведем в степень .
Этап 2.3.2
Умножим на .
Этап 2.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.4.1
С помощью запишем в виде .
Этап 2.4.2
Применим правило степени и перемножим показатели, .
Этап 2.4.3
Объединим и .
Этап 2.4.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.4.4.1
Сократим общий множитель.
Этап 2.4.4.2
Перепишем это выражение.
Этап 2.4.5
Найдем экспоненту.
Этап 2.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Возведем в степень .
Этап 2.5.2
Вынесем знак минуса перед дробью.
Этап 2.6
Применим правило степени для распределения показателей.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Применим правило умножения к .
Этап 2.6.2
Применим правило умножения к .
Этап 2.7
Возведем в степень .
Этап 2.8
Умножим на .
Этап 2.9
Возведем в степень .
Этап 2.10
Возведем в степень .
Этап 2.11
Объединим числители над общим знаменателем.
Этап 2.12
Добавим и .
Этап 2.13
Разделим на .
Этап 2.14
Любой корень из равен .
Этап 3
, следовательно .
Этап 4
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.1
Разделим на .
Этап 4.2
Вынесем знак минуса перед дробью.
Этап 5
Аппроксимируем результат.