Введите задачу...
Тригонометрия Примеры
, ,
Этап 1
Теорема синусов основана на пропорциональности сторон и углов в треугольниках. Закон гласит, что для углов непрямого треугольника стороны пропорциональны синусам противолежащих углов.
Этап 2
Подставим известные значения в теорему синусов, чтобы найти .
Этап 3
Этап 3.1
Разложим на множители каждый член.
Этап 3.1.1
Найдем значение .
Этап 3.1.2
Найдем значение .
Этап 3.1.3
Вынесем множитель из .
Этап 3.1.4
Вынесем множитель из .
Этап 3.1.5
Разделим дроби.
Этап 3.1.6
Разделим на .
Этап 3.1.7
Объединим и .
Этап 3.2
Найдем НОК знаменателей членов уравнения.
Этап 3.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 3.2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Этап 3.2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 3.2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 3.2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3.2.6
Множителем является само значение .
встречается раз.
Этап 3.2.7
Множителем является само значение .
встречается раз.
Этап 3.2.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3.2.9
Умножим на .
Этап 3.3
Каждый член в умножим на , чтобы убрать дроби.
Этап 3.3.1
Умножим каждый член на .
Этап 3.3.2
Упростим левую часть.
Этап 3.3.2.1
Сократим общий множитель .
Этап 3.3.2.1.1
Вынесем множитель из .
Этап 3.3.2.1.2
Сократим общий множитель.
Этап 3.3.2.1.3
Перепишем это выражение.
Этап 3.3.3
Упростим правую часть.
Этап 3.3.3.1
Сократим общий множитель .
Этап 3.3.3.1.1
Вынесем множитель из .
Этап 3.3.3.1.2
Сократим общий множитель.
Этап 3.3.3.1.3
Перепишем это выражение.
Этап 3.4
Решим уравнение.
Этап 3.4.1
Перепишем уравнение в виде .
Этап 3.4.2
Разделим каждый член на и упростим.
Этап 3.4.2.1
Разделим каждый член на .
Этап 3.4.2.2
Упростим левую часть.
Этап 3.4.2.2.1
Сократим общий множитель .
Этап 3.4.2.2.1.1
Сократим общий множитель.
Этап 3.4.2.2.1.2
Разделим на .
Этап 3.4.2.3
Упростим правую часть.
Этап 3.4.2.3.1
Вынесем множитель из .
Этап 3.4.2.3.2
Вынесем множитель из .
Этап 3.4.2.3.3
Разделим дроби.
Этап 3.4.2.3.4
Разделим на .
Этап 3.4.2.3.5
Разделим на .
Этап 4
Сумма всех углов треугольника составляет градусов.
Этап 5
Этап 5.1
Добавим и .
Этап 5.2
Перенесем все члены без в правую часть уравнения.
Этап 5.2.1
Вычтем из обеих частей уравнения.
Этап 5.2.2
Вычтем из .
Этап 6
Используем теорему косинусов, чтобы найти неизвестную сторону треугольника по двум другим сторонам и прилежащему углу.
Этап 7
Решим уравнение.
Этап 8
Подставим известные значения в уравнение.
Этап 9
Этап 9.1
Применим правило умножения к .
Этап 9.2
Возведем в степень .
Этап 9.3
Применим правило умножения к .
Этап 9.4
Возведем в степень .
Этап 9.5
Умножим на , сложив экспоненты.
Этап 9.5.1
Перенесем .
Этап 9.5.2
Умножим на .
Этап 9.6
Умножим.
Этап 9.6.1
Умножим на .
Этап 9.6.2
Умножим на .
Этап 9.7
Умножим на .
Этап 9.8
Добавим и .
Этап 9.9
Вычтем из .
Этап 9.10
Перепишем в виде .
Этап 9.11
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 10
Это результаты для всех углов и сторон данного треугольника.