Введите задачу...
Тригонометрия Примеры
, ,
Этап 1
Теорема синусов дает неоднозначный результат. Это указывает на существование углов, при которых уравнение имеет корректное решение. Для первого треугольника используем первое возможное значение угла.
Найдем решение для первого треугольника.
Этап 2
Теорема синусов основана на пропорциональности сторон и углов в треугольниках. Закон гласит, что для углов непрямого треугольника стороны пропорциональны синусам противолежащих углов.
Этап 3
Подставим известные значения в теорему синусов, чтобы найти .
Этап 4
Этап 4.1
Умножим обе части уравнения на .
Этап 4.2
Упростим обе части уравнения.
Этап 4.2.1
Упростим левую часть.
Этап 4.2.1.1
Сократим общий множитель .
Этап 4.2.1.1.1
Сократим общий множитель.
Этап 4.2.1.1.2
Перепишем это выражение.
Этап 4.2.2
Упростим правую часть.
Этап 4.2.2.1
Упростим .
Этап 4.2.2.1.1
Найдем значение .
Этап 4.2.2.1.2
Разделим на .
Этап 4.2.2.1.3
Умножим на .
Этап 4.3
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 4.4
Упростим правую часть.
Этап 4.4.1
Найдем значение .
Этап 4.5
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 4.6
Вычтем из .
Этап 4.7
Решение уравнения .
Этап 5
Сумма всех углов треугольника составляет градусов.
Этап 6
Этап 6.1
Добавим и .
Этап 6.2
Перенесем все члены без в правую часть уравнения.
Этап 6.2.1
Вычтем из обеих частей уравнения.
Этап 6.2.2
Вычтем из .
Этап 7
Используем теорему косинусов, чтобы найти неизвестную сторону треугольника по двум другим сторонам и прилежащему углу.
Этап 8
Решим уравнение.
Этап 9
Подставим известные значения в уравнение.
Этап 10
Этап 10.1
Возведем в степень .
Этап 10.2
Возведем в степень .
Этап 10.3
Умножим .
Этап 10.3.1
Умножим на .
Этап 10.3.2
Умножим на .
Этап 10.4
Добавим и .
Этап 11
Для второго треугольника воспользуемся вторым возможным значением угла.
Найдем решение для второго треугольника.
Этап 12
Теорема синусов основана на пропорциональности сторон и углов в треугольниках. Закон гласит, что для углов непрямого треугольника стороны пропорциональны синусам противолежащих углов.
Этап 13
Подставим известные значения в теорему синусов, чтобы найти .
Этап 14
Этап 14.1
Умножим обе части уравнения на .
Этап 14.2
Упростим обе части уравнения.
Этап 14.2.1
Упростим левую часть.
Этап 14.2.1.1
Сократим общий множитель .
Этап 14.2.1.1.1
Сократим общий множитель.
Этап 14.2.1.1.2
Перепишем это выражение.
Этап 14.2.2
Упростим правую часть.
Этап 14.2.2.1
Упростим .
Этап 14.2.2.1.1
Найдем значение .
Этап 14.2.2.1.2
Разделим на .
Этап 14.2.2.1.3
Умножим на .
Этап 14.3
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 14.4
Упростим правую часть.
Этап 14.4.1
Найдем значение .
Этап 14.5
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 14.6
Вычтем из .
Этап 14.7
Решение уравнения .
Этап 15
Сумма всех углов треугольника составляет градусов.
Этап 16
Этап 16.1
Добавим и .
Этап 16.2
Перенесем все члены без в правую часть уравнения.
Этап 16.2.1
Вычтем из обеих частей уравнения.
Этап 16.2.2
Вычтем из .
Этап 17
Теорема синусов основана на пропорциональности сторон и углов в треугольниках. Закон гласит, что для углов непрямого треугольника стороны пропорциональны синусам противолежащих углов.
Этап 18
Подставим известные значения в теорему синусов, чтобы найти .
Этап 19
Этап 19.1
Разложим на множители каждый член.
Этап 19.1.1
Найдем значение .
Этап 19.1.2
Найдем значение .
Этап 19.1.3
Разделим на .
Этап 19.2
Найдем НОК знаменателей членов уравнения.
Этап 19.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 19.2.2
НОК единицы и любого выражения есть это выражение.
Этап 19.3
Каждый член в умножим на , чтобы убрать дроби.
Этап 19.3.1
Умножим каждый член на .
Этап 19.3.2
Упростим левую часть.
Этап 19.3.2.1
Сократим общий множитель .
Этап 19.3.2.1.1
Сократим общий множитель.
Этап 19.3.2.1.2
Перепишем это выражение.
Этап 19.4
Решим уравнение.
Этап 19.4.1
Перепишем уравнение в виде .
Этап 19.4.2
Разделим каждый член на и упростим.
Этап 19.4.2.1
Разделим каждый член на .
Этап 19.4.2.2
Упростим левую часть.
Этап 19.4.2.2.1
Сократим общий множитель .
Этап 19.4.2.2.1.1
Сократим общий множитель.
Этап 19.4.2.2.1.2
Разделим на .
Этап 19.4.2.3
Упростим правую часть.
Этап 19.4.2.3.1
Разделим на .
Этап 20
Это результаты для всех углов и сторон данного треугольника.
Комбинация первого треугольника:
Комбинация второго треугольника: