Тригонометрия Примеры

Решить треугольник A=71 , B=62 , C=47 , a=20
, , ,
Этап 1
Теорема синусов основана на пропорциональности сторон и углов в треугольниках. Закон гласит, что для углов непрямого треугольника стороны пропорциональны синусам противолежащих углов.
Этап 2
Подставим известные значения в теорему синусов, чтобы найти .
Этап 3
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Разложим на множители каждый член.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Найдем значение .
Этап 3.1.2
Найдем значение .
Этап 3.1.3
Разделим на .
Этап 3.2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 3.2.2
НОК единицы и любого выражения есть это выражение.
Этап 3.3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Умножим каждый член на .
Этап 3.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Сократим общий множитель.
Этап 3.3.2.1.2
Перепишем это выражение.
Этап 3.4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Перепишем уравнение в виде .
Этап 3.4.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Разделим каждый член на .
Этап 3.4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.1.1
Сократим общий множитель.
Этап 3.4.2.2.1.2
Разделим на .
Этап 3.4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.2.3.1
Разделим на .
Этап 4
Теорема синусов основана на пропорциональности сторон и углов в треугольниках. Закон гласит, что для углов непрямого треугольника стороны пропорциональны синусам противолежащих углов.
Этап 5
Подставим известные значения в теорему синусов, чтобы найти .
Этап 6
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Разложим на множители каждый член.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Найдем значение .
Этап 6.1.2
Найдем значение .
Этап 6.1.3
Разделим на .
Этап 6.2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 6.2.2
НОК единицы и любого выражения есть это выражение.
Этап 6.3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Умножим каждый член на .
Этап 6.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.2.1.1
Сократим общий множитель.
Этап 6.3.2.1.2
Перепишем это выражение.
Этап 6.4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 6.4.1
Перепишем уравнение в виде .
Этап 6.4.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.4.2.1
Разделим каждый член на .
Этап 6.4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.4.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.4.2.2.1.1
Сократим общий множитель.
Этап 6.4.2.2.1.2
Разделим на .
Этап 6.4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.4.2.3.1
Разделим на .
Этап 7
Это результаты для всех углов и сторон данного треугольника.