Тригонометрия Примеры

Найти пересечение с осями X и Y f(x)=-2sin(x)-1
Этап 1
Найдем точки пересечения с осью x.
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы найти точки пересечения с осью x, подставим вместо и найдем решение для .
Этап 1.2
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Перепишем уравнение в виде .
Этап 1.2.2
Добавим к обеим частям уравнения.
Этап 1.2.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Разделим каждый член на .
Этап 1.2.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.1.1
Сократим общий множитель.
Этап 1.2.3.2.1.2
Разделим на .
Этап 1.2.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.3.1
Вынесем знак минуса перед дробью.
Этап 1.2.4
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 1.2.5
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Точное значение : .
Этап 1.2.6
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 1.2.7
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Этап 1.2.7.1
Вычтем из .
Этап 1.2.7.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 1.2.8
Найдем период .
Нажмите для увеличения количества этапов...
Этап 1.2.8.1
Период функции можно вычислить по формуле .
Этап 1.2.8.2
Заменим на в формуле периода.
Этап 1.2.8.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 1.2.8.4
Разделим на .
Этап 1.2.9
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Нажмите для увеличения количества этапов...
Этап 1.2.9.1
Добавим к , чтобы найти положительный угол.
Этап 1.2.9.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2.9.3
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 1.2.9.3.1
Объединим и .
Этап 1.2.9.3.2
Объединим числители над общим знаменателем.
Этап 1.2.9.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.2.9.4.1
Умножим на .
Этап 1.2.9.4.2
Вычтем из .
Этап 1.2.9.5
Перечислим новые углы.
Этап 1.2.10
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 1.3
Точки пересечения с осью x в форме точки.
Точки пересечения с осью x: , для любого целого
Точки пересечения с осью x: , для любого целого
Этап 2
Найдем точку пересечения с осью Y.
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы найти точки пересечения с осью y, подставим вместо и найдем решение для .
Этап 2.2
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Избавимся от скобок.
Этап 2.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Точное значение : .
Этап 2.2.2.1.2
Умножим на .
Этап 2.2.2.2
Вычтем из .
Этап 2.3
Точки пересечения с осью y в форме точки.
Точки пересечения с осью y:
Точки пересечения с осью y:
Этап 3
Перечислим пересечения.
Точки пересечения с осью x: , для любого целого
Точки пересечения с осью y:
Этап 4