Введите задачу...
Тригонометрия Примеры
Этап 1
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 2
Используем свойства произведения логарифмов: .
Этап 3
Применим свойство дистрибутивности.
Этап 4
Этап 4.1
Умножим на .
Этап 4.2
Перенесем влево от .
Этап 5
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 6
Этап 6.1
Перепишем уравнение в виде .
Этап 6.2
Вычтем из обеих частей уравнения.
Этап 6.3
Разложим на множители, используя метод группировки.
Этап 6.3.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 6.3.2
Запишем разложение на множители, используя данные целые числа.
Этап 6.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6.5
Приравняем к , затем решим относительно .
Этап 6.5.1
Приравняем к .
Этап 6.5.2
Добавим к обеим частям уравнения.
Этап 6.6
Приравняем к , затем решим относительно .
Этап 6.6.1
Приравняем к .
Этап 6.6.2
Вычтем из обеих частей уравнения.
Этап 6.7
Окончательным решением являются все значения, при которых верно.
Этап 7
Исключим решения, которые не делают истинным.