Тригонометрия Примеры

Этап 1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Умножим на .
Этап 1.3.2
Умножим на .
Этап 1.4
Объединим числители над общим знаменателем.
Этап 1.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Умножим на .
Этап 1.5.2
Вычтем из .
Этап 1.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.6.1
Вынесем множитель из .
Этап 1.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.6.2.1
Вынесем множитель из .
Этап 1.6.2.2
Сократим общий множитель.
Этап 1.6.2.3
Перепишем это выражение.
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Этап 2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.5
У есть множители: и .
Этап 2.6
Умножим на .
Этап 2.7
Множителем является само значение .
встречается раз.
Этап 2.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.9
НОК представляет собой произведение числовой части и переменной части.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.2
Объединим и .
Этап 3.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Сократим общий множитель.
Этап 3.2.3.2
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Вынесем множитель из .
Этап 3.3.1.2
Сократим общий множитель.
Этап 3.3.1.3
Перепишем это выражение.
Этап 4
Перепишем уравнение в виде .