Тригонометрия Примеры

Risolvere per x 5/(x+4)-4=(9x+16)/(x+6)
Этап 1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Добавим к обеим частям уравнения.
Этап 1.2
Разобьем дробь на две дроби.
Этап 1.3
Найдем общий знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Запишем в виде дроби со знаменателем .
Этап 1.3.2
Умножим на .
Этап 1.3.3
Умножим на .
Этап 1.4
Объединим числители над общим знаменателем.
Этап 1.5
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Применим свойство дистрибутивности.
Этап 1.5.2
Умножим на .
Этап 1.6
Добавим и .
Этап 1.7
Добавим и .
Этап 1.8
Разобьем дробь на две дроби.
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.3
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.4
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.5
Множителем является само значение .
встречается раз.
Этап 2.6
Множителем является само значение .
встречается раз.
Этап 2.7
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Перепишем это выражение.
Этап 3.2.2
Применим свойство дистрибутивности.
Этап 3.2.3
Умножим на .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1.1
Вынесем множитель из .
Этап 3.3.1.1.2
Сократим общий множитель.
Этап 3.3.1.1.3
Перепишем это выражение.
Этап 3.3.1.2
Применим свойство дистрибутивности.
Этап 3.3.1.3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.3.1.3.1
Перенесем .
Этап 3.3.1.3.2
Умножим на .
Этап 3.3.1.4
Умножим на .
Этап 3.3.1.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.5.1
Вынесем множитель из .
Этап 3.3.1.5.2
Сократим общий множитель.
Этап 3.3.1.5.3
Перепишем это выражение.
Этап 3.3.1.6
Применим свойство дистрибутивности.
Этап 3.3.1.7
Умножим на .
Этап 3.3.2
Добавим и .
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 4.2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Вычтем из обеих частей уравнения.
Этап 4.2.2
Вычтем из .
Этап 4.3
Перенесем все члены в левую часть уравнения и упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вычтем из обеих частей уравнения.
Этап 4.3.2
Вычтем из .
Этап 4.4
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.6.1.1
Возведем в степень .
Этап 4.6.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.6.1.2.1
Умножим на .
Этап 4.6.1.2.2
Умножим на .
Этап 4.6.1.3
Вычтем из .
Этап 4.6.2
Умножим на .
Этап 4.7
Окончательный ответ является комбинацией обоих решений.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: