Введите задачу...
Тригонометрия Примеры
Этап 1
Этап 1.1
Умножим на .
Этап 1.2
Объединим и упростим знаменатель.
Этап 1.2.1
Умножим на .
Этап 1.2.2
Перенесем .
Этап 1.2.3
Возведем в степень .
Этап 1.2.4
Возведем в степень .
Этап 1.2.5
Применим правило степени для объединения показателей.
Этап 1.2.6
Добавим и .
Этап 1.2.7
Перепишем в виде .
Этап 1.2.7.1
С помощью запишем в виде .
Этап 1.2.7.2
Применим правило степени и перемножим показатели, .
Этап 1.2.7.3
Объединим и .
Этап 1.2.7.4
Сократим общий множитель .
Этап 1.2.7.4.1
Сократим общий множитель.
Этап 1.2.7.4.2
Перепишем это выражение.
Этап 1.2.7.5
Найдем экспоненту.
Этап 1.3
Умножим на .
Этап 2
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 3
Этап 3.1
Найдем значение .
Этап 4
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 5
Этап 5.1
Избавимся от скобок.
Этап 5.2
Избавимся от скобок.
Этап 5.3
Вычтем из .
Этап 6
Этап 6.1
Период функции можно вычислить по формуле .
Этап 6.2
Заменим на в формуле периода.
Этап 6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.4
Разделим на .
Этап 7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого