Введите задачу...
Тригонометрия Примеры
Этап 1
Чтобы найти угла между осью x и прямой, соединяющей точки и , нарисуем треугольник с вершинами в точках , и .
Противоположное:
Смежный:
Этап 2
Этап 2.1
Применим правило умножения к .
Этап 2.2
Единица в любой степени равна единице.
Этап 2.3
Возведем в степень .
Этап 2.4
Применим правило степени для распределения показателей.
Этап 2.4.1
Применим правило умножения к .
Этап 2.4.2
Применим правило умножения к .
Этап 2.5
Упростим выражение.
Этап 2.5.1
Возведем в степень .
Этап 2.5.2
Умножим на .
Этап 2.6
Перепишем в виде .
Этап 2.6.1
С помощью запишем в виде .
Этап 2.6.2
Применим правило степени и перемножим показатели, .
Этап 2.6.3
Объединим и .
Этап 2.6.4
Сократим общий множитель .
Этап 2.6.4.1
Сократим общий множитель.
Этап 2.6.4.2
Перепишем это выражение.
Этап 2.6.5
Найдем экспоненту.
Этап 2.7
Упростим выражение.
Этап 2.7.1
Возведем в степень .
Этап 2.7.2
Объединим числители над общим знаменателем.
Этап 2.7.3
Добавим и .
Этап 2.7.4
Разделим на .
Этап 2.7.5
Любой корень из равен .
Этап 3
, следовательно .
Этап 4
Этап 4.1
Сократим общий множитель и .
Этап 4.1.1
Перепишем в виде .
Этап 4.1.2
Вынесем знак минуса перед дробью.
Этап 4.2
Умножим числитель на величину, обратную знаменателю.
Этап 4.3
Умножим на .
Этап 4.4
Умножим на .
Этап 4.5
Объединим и упростим знаменатель.
Этап 4.5.1
Умножим на .
Этап 4.5.2
Возведем в степень .
Этап 4.5.3
Возведем в степень .
Этап 4.5.4
Применим правило степени для объединения показателей.
Этап 4.5.5
Добавим и .
Этап 4.5.6
Перепишем в виде .
Этап 4.5.6.1
С помощью запишем в виде .
Этап 4.5.6.2
Применим правило степени и перемножим показатели, .
Этап 4.5.6.3
Объединим и .
Этап 4.5.6.4
Сократим общий множитель .
Этап 4.5.6.4.1
Сократим общий множитель.
Этап 4.5.6.4.2
Перепишем это выражение.
Этап 4.5.6.5
Найдем экспоненту.
Этап 5
Аппроксимируем результат.