Введите задачу...
Тригонометрия Примеры
Этап 1
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 2
Этап 2.1
Точное значение : .
Этап 3
Этап 3.1
Добавим к обеим частям уравнения.
Этап 3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.4
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 3.4.1
Умножим на .
Этап 3.4.2
Умножим на .
Этап 3.4.3
Умножим на .
Этап 3.4.4
Умножим на .
Этап 3.5
Объединим числители над общим знаменателем.
Этап 3.6
Упростим числитель.
Этап 3.6.1
Перенесем влево от .
Этап 3.6.2
Перенесем влево от .
Этап 3.6.3
Добавим и .
Этап 4
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Этап 4.2.1
Сократим общий множитель .
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.3
Упростим правую часть.
Этап 4.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 4.3.2
Умножим .
Этап 4.3.2.1
Умножим на .
Этап 4.3.2.2
Умножим на .
Этап 5
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 6
Этап 6.1
Упростим .
Этап 6.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.1.2
Объединим дроби.
Этап 6.1.2.1
Объединим и .
Этап 6.1.2.2
Объединим числители над общим знаменателем.
Этап 6.1.3
Упростим числитель.
Этап 6.1.3.1
Умножим на .
Этап 6.1.3.2
Вычтем из .
Этап 6.2
Перенесем все члены без в правую часть уравнения.
Этап 6.2.1
Добавим к обеим частям уравнения.
Этап 6.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.4
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 6.2.4.1
Умножим на .
Этап 6.2.4.2
Умножим на .
Этап 6.2.4.3
Умножим на .
Этап 6.2.4.4
Умножим на .
Этап 6.2.5
Объединим числители над общим знаменателем.
Этап 6.2.6
Упростим числитель.
Этап 6.2.6.1
Умножим на .
Этап 6.2.6.2
Перенесем влево от .
Этап 6.2.6.3
Добавим и .
Этап 6.3
Разделим каждый член на и упростим.
Этап 6.3.1
Разделим каждый член на .
Этап 6.3.2
Упростим левую часть.
Этап 6.3.2.1
Сократим общий множитель .
Этап 6.3.2.1.1
Сократим общий множитель.
Этап 6.3.2.1.2
Разделим на .
Этап 6.3.3
Упростим правую часть.
Этап 6.3.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 6.3.3.2
Умножим .
Этап 6.3.3.2.1
Умножим на .
Этап 6.3.3.2.2
Умножим на .
Этап 7
Этап 7.1
Период функции можно вычислить по формуле .
Этап 7.2
Заменим на в формуле периода.
Этап 7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого