Тригонометрия Примеры

Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК единицы и любого выражения есть это выражение.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Перенесем .
Этап 3.2.1.2
Умножим на .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.3.1.2
Сократим общий множитель.
Этап 3.3.1.3
Перепишем это выражение.
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Добавим к обеим частям уравнения.
Этап 4.2
Добавим к обеим частям уравнения.
Этап 4.3
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.4
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.5.1.1
Возведем в степень .
Этап 4.5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.5.1.2.1
Умножим на .
Этап 4.5.1.2.2
Умножим на .
Этап 4.5.1.3
Вычтем из .
Этап 4.5.1.4
Перепишем в виде .
Этап 4.5.1.5
Перепишем в виде .
Этап 4.5.1.6
Перепишем в виде .
Этап 4.5.1.7
Перепишем в виде .
Этап 4.5.1.8
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.5.1.9
Перенесем влево от .
Этап 4.5.2
Умножим на .
Этап 4.5.3
Упростим .
Этап 4.6
Окончательный ответ является комбинацией обоих решений.