Введите задачу...
Тригонометрия Примеры
Этап 1
Этап 1.1
Выразим через синусы и косинусы, затем сократим общие множители.
Этап 1.1.1
Добавим круглые скобки.
Этап 1.1.2
Выразим через синусы и косинусы.
Этап 1.1.3
Сократим общие множители.
Этап 2
Разделим каждый член уравнения на .
Этап 3
Разделим дроби.
Этап 4
Переведем в .
Этап 5
Разделим на .
Этап 6
Этап 6.1
Сократим общий множитель.
Этап 6.2
Разделим на .
Этап 7
Этап 7.1
Разделим каждый член на .
Этап 7.2
Упростим левую часть.
Этап 7.2.1
Сократим общий множитель .
Этап 7.2.1.1
Сократим общий множитель.
Этап 7.2.1.2
Разделим на .
Этап 8
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 9
Этап 9.1
Найдем значение .
Этап 10
Функция тангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Этап 11
Этап 11.1
Избавимся от скобок.
Этап 11.2
Избавимся от скобок.
Этап 11.3
Добавим и .
Этап 12
Этап 12.1
Период функции можно вычислить по формуле .
Этап 12.2
Заменим на в формуле периода.
Этап 12.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 12.4
Разделим на .
Этап 13
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 14
Объединим и в .
, для любого целого