Введите задачу...
Тригонометрия Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Упростим каждый член.
Этап 2.1.1
Перепишем в виде .
Этап 2.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 2.1.2.1
Применим свойство дистрибутивности.
Этап 2.1.2.2
Применим свойство дистрибутивности.
Этап 2.1.2.3
Применим свойство дистрибутивности.
Этап 2.1.3
Упростим и объединим подобные члены.
Этап 2.1.3.1
Упростим каждый член.
Этап 2.1.3.1.1
Умножим на .
Этап 2.1.3.1.2
Перенесем влево от .
Этап 2.1.3.1.3
Умножим на .
Этап 2.1.3.2
Вычтем из .
Этап 2.1.4
Применим свойство дистрибутивности.
Этап 2.1.5
Упростим.
Этап 2.1.5.1
Умножим на .
Этап 2.1.5.2
Умножим на .
Этап 2.2
Объединим противоположные члены в .
Этап 2.2.1
Вычтем из .
Этап 2.2.2
Добавим и .
Этап 3
Этап 3.1
Разделим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Сократим общий множитель .
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Разделим на .
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Упростим каждый член.
Этап 3.3.1.1
Вынесем знак минуса перед дробью.
Этап 3.3.1.2
Сократим общий множитель и .
Этап 3.3.1.2.1
Вынесем множитель из .
Этап 3.3.1.2.2
Сократим общие множители.
Этап 3.3.1.2.2.1
Вынесем множитель из .
Этап 3.3.1.2.2.2
Сократим общий множитель.
Этап 3.3.1.2.2.3
Перепишем это выражение.
Этап 4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5
Этап 5.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.2
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 5.2.1
Умножим на .
Этап 5.2.2
Умножим на .
Этап 5.3
Объединим числители над общим знаменателем.
Этап 5.4
Упростим числитель.
Этап 5.4.1
Вынесем множитель из .
Этап 5.4.1.1
Вынесем множитель из .
Этап 5.4.1.2
Вынесем множитель из .
Этап 5.4.1.3
Вынесем множитель из .
Этап 5.4.2
Умножим на .
Этап 5.5
Перепишем в виде .
Этап 5.5.1
Вынесем полную степень из .
Этап 5.5.2
Вынесем полную степень из .
Этап 5.5.3
Перегруппируем дробь .
Этап 5.6
Вынесем члены из-под знака корня.
Этап 5.7
Возведем в степень .
Этап 5.8
Объединим и .
Этап 6
Этап 6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 6.2
Добавим к обеим частям уравнения.
Этап 6.3
Затем, используя отрицательное значение , найдем второе решение.
Этап 6.4
Добавим к обеим частям уравнения.
Этап 6.5
Полное решение является результатом как положительных, так и отрицательных частей решения.