Введите задачу...
Тригонометрия Примеры
Этап 1
Этап 1.1
Разделим каждый член на .
Этап 1.2
Упростим левую часть.
Этап 1.2.1
Разделим дроби.
Этап 1.2.2
Выразим через синусы и косинусы.
Этап 1.2.3
Умножим на обратную дробь, чтобы разделить на .
Этап 1.2.4
Запишем в виде дроби со знаменателем .
Этап 1.2.5
Сократим общий множитель .
Этап 1.2.5.1
Сократим общий множитель.
Этап 1.2.5.2
Перепишем это выражение.
Этап 1.2.6
Объединим и .
Этап 1.3
Упростим правую часть.
Этап 1.3.1
Сократим общий множитель .
Этап 1.3.1.1
Сократим общий множитель.
Этап 1.3.1.2
Перепишем это выражение.
Этап 1.3.2
Сократим общий множитель .
Этап 1.3.2.1
Сократим общий множитель.
Этап 1.3.2.2
Перепишем это выражение.
Этап 2
Умножим обе части уравнения на .
Этап 3
Этап 3.1
Упростим левую часть.
Этап 3.1.1
Упростим .
Этап 3.1.1.1
Сократим общий множитель .
Этап 3.1.1.1.1
Сократим общий множитель.
Этап 3.1.1.1.2
Перепишем это выражение.
Этап 3.1.1.2
Сократим общий множитель .
Этап 3.1.1.2.1
Вынесем множитель из .
Этап 3.1.1.2.2
Сократим общий множитель.
Этап 3.1.1.2.3
Перепишем это выражение.
Этап 3.2
Упростим правую часть.
Этап 3.2.1
Умножим на .
Этап 4
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 5
Этап 5.1
Найдем значение .
Этап 6
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 7
Этап 7.1
Умножим на .
Этап 7.2
Вычтем из .
Этап 8
Этап 8.1
Период функции можно вычислить по формуле .
Этап 8.2
Заменим на в формуле периода.
Этап 8.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 8.4
Разделим на .
Этап 9
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого