Введите задачу...
Тригонометрия Примеры
Этап 1
Перепишем уравнение в виде .
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Избавимся от скобок.
Этап 2.3
НОК единицы и любого выражения есть это выражение.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Упростим каждый член.
Этап 3.2.1.1
Применим свойство дистрибутивности.
Этап 3.2.1.2
Умножим на .
Этап 3.2.1.3
Перенесем влево от .
Этап 3.2.1.4
Применим свойство дистрибутивности.
Этап 3.2.1.5
Умножим на .
Этап 3.2.1.6
Сократим общий множитель .
Этап 3.2.1.6.1
Сократим общий множитель.
Этап 3.2.1.6.2
Перепишем это выражение.
Этап 3.2.2
Упростим путем добавления членов.
Этап 3.2.2.1
Добавим и .
Этап 3.2.2.2
Добавим и .
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Применим свойство дистрибутивности.
Этап 3.3.2
Перенесем влево от .
Этап 4
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Вычтем из обеих частей уравнения.
Этап 4.3
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.4
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.5
Упростим.
Этап 4.5.1
Упростим числитель.
Этап 4.5.1.1
Применим свойство дистрибутивности.
Этап 4.5.1.2
Умножим на .
Этап 4.5.1.3
Умножим .
Этап 4.5.1.3.1
Умножим на .
Этап 4.5.1.3.2
Умножим на .
Этап 4.5.1.4
Перепишем в виде .
Этап 4.5.1.5
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 4.5.1.5.1
Применим свойство дистрибутивности.
Этап 4.5.1.5.2
Применим свойство дистрибутивности.
Этап 4.5.1.5.3
Применим свойство дистрибутивности.
Этап 4.5.1.6
Упростим и объединим подобные члены.
Этап 4.5.1.6.1
Упростим каждый член.
Этап 4.5.1.6.1.1
Умножим на .
Этап 4.5.1.6.1.2
Умножим на .
Этап 4.5.1.6.1.3
Умножим на .
Этап 4.5.1.6.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 4.5.1.6.1.5
Умножим на , сложив экспоненты.
Этап 4.5.1.6.1.5.1
Перенесем .
Этап 4.5.1.6.1.5.2
Умножим на .
Этап 4.5.1.6.1.6
Умножим на .
Этап 4.5.1.6.1.7
Умножим на .
Этап 4.5.1.6.2
Вычтем из .
Этап 4.5.1.7
Умножим на .
Этап 4.5.1.8
Применим свойство дистрибутивности.
Этап 4.5.1.9
Умножим на .
Этап 4.5.1.10
Умножим на .
Этап 4.5.1.11
Вычтем из .
Этап 4.5.1.12
Добавим и .
Этап 4.5.1.13
Изменим порядок членов.
Этап 4.5.2
Умножим на .
Этап 4.6
Окончательный ответ является комбинацией обоих решений.