Тригонометрия Примеры

Найти обратный элемент 1/16x^2-49
Этап 1
Поменяем переменные местами.
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем уравнение в виде .
Этап 2.2
Объединим и .
Этап 2.3
Добавим к обеим частям уравнения.
Этап 2.4
Умножим обе части уравнения на .
Этап 2.5
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.5.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.5.1.1.1
Сократим общий множитель.
Этап 2.5.1.1.2
Перепишем это выражение.
Этап 2.5.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.5.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.5.2.1.1
Применим свойство дистрибутивности.
Этап 2.5.2.1.2
Умножим на .
Этап 2.6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.7
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.7.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.7.1.1
Вынесем множитель из .
Этап 2.7.1.2
Вынесем множитель из .
Этап 2.7.1.3
Вынесем множитель из .
Этап 2.7.2
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.7.2.1
Перепишем в виде .
Этап 2.7.2.2
Перепишем в виде .
Этап 2.7.3
Вынесем члены из-под знака корня.
Этап 2.7.4
Возведем в степень .
Этап 2.8
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 2.8.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.8.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.8.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3
Replace with to show the final answer.
Этап 4
Проверим, является ли обратной к .
Нажмите для увеличения количества этапов...
Этап 4.1
Область определения обратной функции — это множество значений исходной функции, и наоборот. Найдем область определения и множество значений и и сравним их.
Этап 4.2
Найдем множество значений .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Множество значений ― это множество всех допустимых значений . Используем график, чтобы найти множество значений.
Интервальное представление:
Этап 4.3
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 4.3.2
Вычтем из обеих частей неравенства.
Этап 4.3.3
Область определения ― это все значения , при которых выражение определено.
Этап 4.4
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 4.4.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4.5
Так как область определения представляет множество значений, определяемых уравнением , а множество значений, определяемое уравнениями , представляет область определения , то  — обратная к .
Этап 5