Тригонометрия Примеры

Найти обратный элемент x^2-16
Этап 1
Поменяем переменные местами.
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем уравнение в виде .
Этап 2.2
Добавим к обеим частям уравнения.
Этап 2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3
Replace with to show the final answer.
Этап 4
Проверим, является ли обратной к .
Нажмите для увеличения количества этапов...
Этап 4.1
Область определения обратной функции — это множество значений исходной функции, и наоборот. Найдем область определения и множество значений и и сравним их.
Этап 4.2
Найдем множество значений .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Множество значений ― это множество всех допустимых значений . Используем график, чтобы найти множество значений.
Интервальное представление:
Этап 4.3
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 4.3.2
Вычтем из обеих частей неравенства.
Этап 4.3.3
Область определения ― это все значения , при которых выражение определено.
Этап 4.4
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 4.4.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4.5
Так как область определения представляет множество значений, определяемых уравнением , а множество значений, определяемое уравнениями , представляет область определения , то  — обратная к .
Этап 5